Psychometric Properties of the Test of Gross Motor Development-3 for Children With Visual Impairments

in Adapted Physical Activity Quarterly
Restricted access

Purchase Article

USD  $24.95

Student 1 year subscription

USD  $63.00

1 year subscription

USD  $84.00

Student 2 year subscription

USD  $119.00

2 year subscription

USD  $156.00

Results of the Test of Gross Motor Development-2 (TGMD-2) consistently show acceptable validity and reliability for children/adolescents who are sighted and those who have visual impairments. Results of the Test of Gross Motor Development-3 (TGMD-3) are often valid and reliable for children who are sighted, but its psychometric properties are unknown for children with visual impairments. Participants (N = 66; Mage = 12.93, SD = 2.40) with visual impairments completed the TGMD-2 and TGMD-3. The TGMD-3 results from this sample revealed high internal consistency (ω = .89–.95), strong interrater reliability (ICC = .91–.92), convergence with the TGMD-2 (r = .96), and good model fit, χ2(63) = 80.10, p = .072, χ2/df ratio = 1.27, RMSEA = .06, CFI = .97. Researchers and practitioners can use the TGMD-3 to assess the motor skill performance for children/adolescents with visual impairments and most likely produce results that are valid and reliable.

Brian and Taunton are with the Dept. of Physical Education, University of South Carolina, Columbia, SC. Lieberman is with the Dept. of Kinesiology, Sport Studies, and Physical Education, and Haibach-Beach, the Dept. of Physical Education, State University of New York’s College at Brockport, Brockport, NY. Foley is with the Dept. of Physical Education, State University of New York at Cortland, Cortland, NY. Santarossa is with the Dept. of Kinesiology, University of Windsor, Windsor, Ontario, Canada.

Address author correspondence to Ali Brian at abrian@sc.edu.
  • American Educational Research Association, American Psychological Association, & National Council on Measurement in Education. (2014). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.

    • Search Google Scholar
    • Export Citation
  • Barnett, L., Lai, S.K., Veldman, S.L., Hardy, L.L., Cliff, D.P., Morgan, P.J., … Okely, A.D. (2016). Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Medicine, 46(11), 1663–1688. PubMed doi:10.1007/s40279-016-0495-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, L., van Beurden, E., Morgan, P.J., Brooks, L.O., & Beard, J.R. (2008). Does childhood motor skill proficiency predict adolescent fitness? Medicine & Science in Sports & Exercise, 40(12), 2137–2144. PubMed doi:10.1249/MSS.0b013e31818160d3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, L., van Beurden, E., Morgan, P.J., Brooks, L.O., & Beard, J.R. (2009). Childhood motor skill proficiency as a predictor of adolescent physical activity. Journal of Adolescent Health, 44(3), 252–259. PubMed doi:10.1016/j.jadohealth.2008.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cicchetti, D.V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychological Assessment, 6(4), 284–290. doi:10.1037/1040-3590.6.4.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, J.E., & Metcalfe, J.S. (2002). The mountain of motor development: A metaphor. Motor Development: Research and Reviews, 2, 163–190.

    • Search Google Scholar
    • Export Citation
  • Columna, L., Davis, T., Lieberman, L., & Lytle, R. (2010). Determining the most appropriate physical education placement for students with disabilities. Journal of Physical Education, Recreation & Dance, 81(7), 30–37. doi:10.1080/07303084.2010.10598506

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cools, W., DeMartelaer, K., Samaey, C., & Andries, C. (2008). Movement skill assessment of typically developing preschool children: A review of seven movement skill assessment tools. Journal of Sports Science & Medicine, 8, 154–168.

    • Search Google Scholar
    • Export Citation
  • de Schipper, T., Lieberman, L.J., & Moody, B. (2017). “Kids like me, we go lightly on the head”: Experiences of children with a visual impairment on the physical self-concept. British Journal of Visual Impairment, 35(1), 55–68.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunn, T.J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399–412. PubMed doi:10.1111/bjop.12046

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallahue, D., Ozumn, J., & Goodway, J. (2012). Understanding motor development: Infants, children, adolescents and adults (7th ed.). New York, NY: McGraw-Hill.

    • Search Google Scholar
    • Export Citation
  • Haegele, J.A., Brian, A., & Goodway, J. (2015). Fundamental motor skills and school-aged individuals with visual impairments: A review. Review Journal of Autism and Developmental Disorders, 2(3), 320–327. doi:10.1007/s40489-015-0055-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haegele, J.A., & Porretta, D. (2015). Physical activity and school-age individuals with visual impairments: A literature review. Adapted Physical Activity Quarterly, 32(1), 68–82. PubMed doi:10.1123/apaq.2013-0110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haibach, P.S., Lieberman, L.J., & Pritchett, J. (2011). Balance in adolescents with and without visual impairments. Insight: Research and Practice in Visual Impairment and Blindness, 4, 112–123. doi:10.1515/hukin-2015-0096

    • Search Google Scholar
    • Export Citation
  • Haibach, P.S., Wagner, M.O., & Lieberman, L.J. (2014). Determinants of gross motor skill performance in children with visual impairments. Research in Developmental Disabilities, 35, 2577–2584. doi:10.1016/j.ridd.2014.05.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haywood, K., & Getchell, N. (2014). Life span motor development (6th ed.). Champaign, IL: Human Kinetics.

  • Hooper, D., Coughlan, J., & Mullen, M.R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.

    • Search Google Scholar
    • Export Citation
  • Houwen, S., Hartman, E., Jonker, L., & Visscher, C. (2010). Reliability and validity of the TGMD-2 in primary-school-age children with visual impairments. Adapted Physical Activity Quarterly, 27, 143–159. PubMed doi:10.1123/apaq.27.2.143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houwen, S., Hartman, E., & Visscher, C. (2009). Physical activity and motor skills in children with and without visual impairments. Medicine & Science in Sports & Exercise, 41(1), 103–109. PubMed doi:10.1249/MSS.0b013e318183389d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houwen, S., Visscher, C., & Hartman, E. (2009). Motor skill performance of children and adolescents with visual impairments: A review. Exceptional Children, 75, 464–492. doi:10.1177/001440290907500405

    • Search Google Scholar
    • Export Citation
  • Houwen, S., Visscher, C., Lemmink, K.A., & Hartman, E. (2008). Motor skill performance of school-age children with visual impairments. Developmental Medicine & Child Neurology, 50(2), 139–145. PubMed doi:10.1111/j.1469-8749.2007.02016.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lieberman, L.J., Haibach, P.S., & Wagner, M.O. (2014). Let’s play together: Sports equipment for children with and without visual impairments. Palaestra, 28(2), 13–15.

    • Search Google Scholar
    • Export Citation
  • Logan, S.W., Robinson, L.E., Rudisill, M.E., Wadsworth, D.D., & Morera, M. (2014). The comparison of school-age children’s performance on two motor assessments: The Test of Gross Motor Development and the Movement Assessment Battery for Children. Physical Education and Sport Pedagogy, 19(1), 48–59. doi:10.1080/17408989.2012.726979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, S.W., Robinson, L.E., Wilson, A.E., & Lucas, W.A. (2012). Getting the fundamentals of movement: A meta-analysis of the effectiveness of motor skill interventions in children. Child: Care, Health and Development, 38, 305–315. doi:10.1111/j.1365-2214.2011.01307.xs

    • Search Google Scholar
    • Export Citation
  • McNeish, D. (2017). Thanks coefficient alpha, we’ll take it from here. Psychological Methods. Advance online publication. doi:10.1037/met0000144

  • Stodden, D., Goodway, J.D., Langendorfer, S.J., Roberton, M.A., Rudisill, M.E., Garcia, C., & Garcia, L.E. (2008). A developmental perspective on the role of physical competence in physical activity: An emergent relationship. Quest, 60, 290–306. doi:10.1080/00336297.2008.10483582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tandon, P.S., Zhou, C., Sallis, J.F., Cain, K.L., Frank, L.D., & Saelens, B.E. (2012). Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. International Journal of Behavioral Nutrition and Physical Activity, 9, 88. PubMed doi:10.1186/1479-5868-9-88

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Temple, V.A., & Foley, J.T. (2017). A peek at the developmental validity of the Test of Gross Motor Development–3. Journal of Motor Learning and Development, 5(1), 5–14. doi:10.1123/jmld.2016-0005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., LeBlanc, A.G., Kho, M.E., Saunders, T.J., Larouche, R., Colley, R.C., … Connor Gorber, S. (2011). Systematic review of sedentary behaviour and health indicators in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 8, 98. PubMed doi:10.1186/1479-5868-8-98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulrich, D.A. (1985). Test of gross motor development. Austin, TX: Pro-Ed.

  • Ulrich, D.A. (2000). Test of gross motor development (2nd ed.). Austin, TX: Pro-Ed.

  • Ulrich, D.A. (2017). Introduction to the special section: Evaluation of the psychometric properties of the TGMD-3. Journal of Motor Learning and Development, 5(1), 1–4. doi:10.1123/jmld.2017-0020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Waelvelde, H., De Weerdt, W., De Cock, P., & Smits-Engelsman, B.C.M. (2004). Association between visual perceptual deficits and motor deficits in children with developmental coordination disorder. Developmental Medicine & Child Neurology, 46, 661–666. doi:10.1111/j.1469-8749.2004.tb00978.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagner, M.O., Haibach, P.S., & Lieberman, L.J. (2013). Gross motor skill performance in children with and without visual impairments—Research to practice. Research in Developmental Disabilities, 34(10), 3246–3252. PubMed doi:10.1016/j.ridd.2013.06.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, E.K., & Ulrich, D.A. (2017). Evaluation of the psychometric properties of the Test of Gross Motor Development—third edition. Journal of Motor Learning and Development, 5(1), 45–58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weil, E., Wachterman, M., McCarthy, E.P., Davis, R.B., O’Day, B., Iezzoni, L.I., & Wee, C.C. (2002). Obesity among adults with disabling conditions. Journal of the American Medical Association, 288(10), 1265–1268. PubMed doi:10.1001/jama.288.10.1265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Health Organization. (2006). WHO child growth standards: Length/height for age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age, methods and development. Geneva, Switzerland: Author.

    • Search Google Scholar
    • Export Citation
  • Zinbarg, R.E., Revelle, W., Yovel, I., & Li, W. (2005). Cronbach’s α, Revelle’s β, and McDonald’s ωH: Their relations with each other and two alternative conceptualizations of reliability. Psychometrika, 70(1), 123–133. doi:10.1007/s11336-003-0974-7

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 120 120 23
Full Text Views 19 19 3
PDF Downloads 16 16 1