Supplementation and Performance for Wheelchair Athletes: A Systematic Review

in Adapted Physical Activity Quarterly

Click name to view affiliation

Andreia Bauermann Laboratory of Adapted Physical Activity, Federal University of Pará, Belém, Brazil
Brazilian Paralympic Academy, São Paulo, Brazil

Search for other papers by Andreia Bauermann in
Current site
Google Scholar
PubMed
Close
*
,
Karina S.G. de Sá Faculty of Physical Education, University of Campinas, Campinas, São Paulo, Brazil
Brazilian Paralympic Academy, São Paulo, Brazil

Search for other papers by Karina S.G. de Sá in
Current site
Google Scholar
PubMed
Close
*
,
Zilda A. Santos Department of Nutrition, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
Center for Studies in Food and Nutrition, Hospital de Clínicas, Porto Alegre, Brazil

Search for other papers by Zilda A. Santos in
Current site
Google Scholar
PubMed
Close
*
, and
Anselmo A. Costa e Silva Laboratory of Adapted Physical Activity, Federal University of Pará, Belém, Brazil
Brazilian Paralympic Academy, São Paulo, Brazil

Search for other papers by Anselmo A. Costa e Silva in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This systematic review aimed to identify nutritional interventions and supplements that improve the performance for wheelchair athletes. Intervention trials involving high-performance wheelchair athletes were analyzed, including those that comprised a nutritional intervention, defined as any intervention related to food, beverages, and supplementation aiming at evaluating the performance of wheelchair athletes. Of the included studies, four evaluated caffeine supplementation, of which one also evaluated sodium citrate supplementation; two studies evaluated vitamin D supplementation; one study assessed creatine monohydrate supplementation; and one assessed carbohydrate supplementation. Most studies were conducted on athletes with spinal cord injury. Athletes who consumed caffeine exhibited an improvement in performance, but this finding is not strong enough to become a recommendation.

Supplementary Materials

    • Supplementary Material S1 (PDF 191 KB)
    • Supplementary Material S2 (PDF 204 KB)
    • Supplementary Material S3 (PDF 459 KB)
    • Supplementary Material S4 (PDF 371 KB)
  • Collapse
  • Expand
  • Bagchi, D., Nair, S., & Sen, C.K. (Eds.). (2018). Nutrition and enhanced sports performance: Muscle building, endurance, and strength. Academic Press.

    • Search Google Scholar
    • Export Citation
  • Baker, L.B., Nuccio, R.P., & Jeukendrup, A.E. (2000). Acute effects of dietary constituents on motor skill and cognitive performance in athletes. Nutrition Reviews, 72(12), 790802. https://doi.org/10.1111/nure.12157

    • Search Google Scholar
    • Export Citation
  • Booth, A., Clarke, M., & Dooley, G. et al. (2012). The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev, 1(2). https://doi.org/10.1186/2046-4053-1-2

    • Search Google Scholar
    • Export Citation
  • Broad, E. (Ed.). (2014). Sports nutrition for Paralympic athletes. CRC Press.

  • Brown, S.J., Brown, J., & Foskett, A. (2013). The effects of caffeine on repeated sprint performance in team sport athletes: A meta-analysis. Sport Science Review, 22(1–2), 25. https://doi.org/10.2478/ssr-2013-0002

    • Search Google Scholar
    • Export Citation
  • Butts, J., Jacobs, B., & Silvis, M. (2018). Creatine use in sports. Sports Health, 10(1), 3134. https://doi.org/10.1177/1941738117737248

    • Search Google Scholar
    • Export Citation
  • Close, G.L., Russell, J., Cobley, J.N., et al. (2013). Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: Implications for skeletal muscle function. Journal of Sports Sciences, 31(4), 344353. https://doi.org/10.1080/02640414.2012.733822

    • Search Google Scholar
    • Export Citation
  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.

  • Collomp, K., Ahmaidi, S., Chatard, J.C., Audran, M., & Prefaut, C. (1992). Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. European Journal of Applied Physiology and Occupational Physiology, 64(4), 377380. https://doi.org/10.1007/BF00636227

    • Search Google Scholar
    • Export Citation
  • Cook, C.J., Crewther, B.T., Kilduff, L.P., Drawer, S., & Gaviglio, C.M. (2011). Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation—a randomized placebo-controlled trial. Journal International Society of Sports Nutrition, 8(2). PubMed ID: 21324203 https://doi.org/10.1186/1550-2783-8-2

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Muñoz, G., & Muñoz-Guerra, J. (2011). Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Applied physiology, Nutrition, and Metabolism, 36(4), 555561. https://doi.org/10.1139/h11-052

    • Search Google Scholar
    • Export Citation
  • Falcão, W.R., Bloom, G.A., & Loughead, T.M. (2015). Coaches’ perceptions of team cohesion in Paralympic sports. Adapted Physical Activity Quarterly, 32(3), 206222. https://doi.org/10.1123/APAQ.2014-0122

    • Search Google Scholar
    • Export Citation
  • Flueck, J.L., Lienert, M., Schaufelberger, F., Krebs, J., & Perret, C. (2015). Ergogenic effects of caffeine consumption in a 3-min all-out arm crank test in paraplegic and tetraplegic compared with able-bodied individuals. International Journal of Sport Nutrition and Exercise Metabolism, 25(6), 584593. https://doi.org/10.1123/ijsnem.2015-0090

    • Search Google Scholar
    • Export Citation
  • Flueck, J.L., Mettler, S., & Perret, C. (2014). Influence of caffeine and sodium citrate ingestion on 1,500-m exercise performance in elite wheelchair athletes: A pilot study. International Journal of Sport Nutrition and Exercise Metabolism, 24(3), 296304. https://doi.org/10.1123/ijsnem.2013-0127

    • Search Google Scholar
    • Export Citation
  • Flueck, J.L., Schlaepfer, M.W., & Perret, C. (2016). Effect of 12-week vitamin D supplementation on 25 [OH] D status and performance in athletes with a spinal cord injury. Nutrients, 8(10), 586. https://doi.org/10.3390/nu8100586

    • Search Google Scholar
    • Export Citation
  • Garthe, I., & Maughan, R.J. (2018). Athletes and supplements: Prevalence and perspectives. International Journal of Sport Nutrition and Exercise Metabolism, 28(2), 126138. https://doi.org/10.1123/ijsnem.2017-0429

    • Search Google Scholar
    • Export Citation
  • Gee, C.M., Williams, A.M., Sheel, A.W., Eves, N.D., & West, C.R. (2019). Respiratory muscle training in athletes with cervical spinal cord injury: Effects on cardiopulmonary function and exercise capacity. The Journal of Physiology, 597(14), 36733685. https://doi.org/10.1113/JP277943

    • Search Google Scholar
    • Export Citation
  • Girgis, C.M., Clifton-Bligh, R.J., Hamrick, M.W., Holick, M.F., & Gunton, J.E. (2013). The roles of vitamin D in skeletal muscle: Form, function, and metabolism. Endocrine Reviews, 34(1), 3383. https://doi.org/10.1210/er.2012-1012

    • Search Google Scholar
    • Export Citation
  • Glaister, M., Howatson, G., Abraham, C.S., Lockey, R.A., Goodwin, J.E., Foley, P., & McInnes, G. (2008). Caffeine supplementation and multiple sprint running performance. Medicine & Science in Sports & Exercise, 40(10), 18351840. https://doi.org/10.1249/MSS.0b013e31817a8ad2

    • Search Google Scholar
    • Export Citation
  • Graham, T.E. (2001). Caffeine and exercise. Sports Medicine, 31(11), 785807. https://doi.org/10.2165/00007256-200131110-00002

  • Graham-Paulson, T.S., Perret, C., Watson, P., & Goosey-Tolfrey, V.L. (2016). Improvement of sprint performance in wheelchair sportsmen with caffeine supplementation. International Journal of Sports Physiology and Performance, 11(2), 214220. https://doi.org/10.1123/ijspp.2015-0073

    • Search Google Scholar
    • Export Citation
  • Green, A.L., Hultman, E., Macdonald, I.A., Sewell, D.A., & Greenhaff, P.L. (1996). Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. American Journal of Physiology-Endocrinology and Metabolism, 271(5), E821E826. https://doi.org/10.1152/ajpendo.1996.271.5.E821

    • Search Google Scholar
    • Export Citation
  • Greenhaff, P.L. (1995). Creatine and its application as an ergogenic aid. International Journal of Sport Nutrition and Exercise Metabolism, 5(s1), S100S110. https://doi.org/10.1123/ijsn.5.s1.s100

    • Search Google Scholar
    • Export Citation
  • Greenwood, M., Kreider, R., Earnest, C., Rasmussen, C., & Almada, A. (2003). Differences in creatine retention among three nutritional formulations of oral creatine supplements. Journal of Exercise Physiology Online, 6(2), 3743.

    • Search Google Scholar
    • Export Citation
  • Hall, M., & Trojian, T.H. (2013). Creatine supplementation. Current Sports Medicine Reports, 12(4), 240244. https://doi.org/10.1249/JSR.0b013e31829cdff2

    • Search Google Scholar
    • Export Citation
  • Hamilton, B., Whiteley, R., Farooq, A., & Chalabi, H. (2014). Vitamin D concentration in 342 professional football players and association with lower limb isokinetic function. Journal of Science and Medicine in Sport, 17(1), 139143. https://doi.org/10.1016/j.jsams.2013.03.006

    • Search Google Scholar
    • Export Citation
  • Harris, R.C., Söderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical Science, 83(3), 367374. https://doi.org/10.1042/cs0830367

    • Search Google Scholar
    • Export Citation
  • Hultman, E., Soderlund, K., Timmons, J.A., Cederblad, G., & Greenhaff, P.L. (1996). Muscle creatine loading in men. Journal of Applied Physiology, 81(1), 232237. https://doi.org/10.1152/jappl.1996.81.1.232

    • Search Google Scholar
    • Export Citation
  • International Paralympic Committee. (2019). History of the paralympic movement. International Olympic Committee. Retrieved from https://www.paralympic.org/ipc/history

    • Search Google Scholar
    • Export Citation
  • Islamoglu, A.H., & Kenger, E.B. (2019). Nutrition considerations for athletes with physical disabilities. Current Sports Medicine Reports, 18(7), 270274. https://doi.org/10.1249/JSR.0000000000000613

    • Search Google Scholar
    • Export Citation
  • Klimešová, I., Machová, I., Jakubec, A., & Corkle, J. (2017). Effect of caffeine on maximal oxygen uptake in wheelchair rugby players: A randomized, placebo-controlled, double-blind study. Acta Gymnica, 47(1), 1623. https://doi.org/10.5507/ag.2017.001

    • Search Google Scholar
    • Export Citation
  • Kreider, R.B. (2003). Effects of creatine supplementation on performance and training adaptations. Molecular and Cellular Biochemistry, 244(1), 8994. https://doi.org/10.1023/A:1022465203458

    • Search Google Scholar
    • Export Citation
  • Kreider, R.B., Kalman, D.S., Antonio, J., Ziegenfuss, T.N., Wildman, R., Collins, R., Candow, D.G., Kleiner, S.M., Almada, A.L., & Lopez, H.L. (2017). International society of sports nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. Journal of the International Society of Sports Nutrition, 14(1), 118. https://doi.org/10.1186/s12970-017-0173-z

    • Search Google Scholar
    • Export Citation
  • Krogh, K., Mosdal, C., & Laurberg, S. (2000). Gastrointestinal and segmental colonic transit times in patients with acute and chronic spinal cord lesions. Spinal Cord, 38(10), 615621. https://doi.org/10.1038/sj.sc.3101066

    • Search Google Scholar
    • Export Citation
  • Lu, X., Battistuzzo, C.R., Zoghi, M., & Galea, M.P. (2015). Effects of training on upper limb function after cervical spinal cord injury: A systematic review. Clinical Rehabilitation, 29(1), 313. https://doi.org/10.1177/0269215514536411

    • Search Google Scholar
    • Export Citation
  • Mneimneh, F., Moussalem, C., Ghaddar, N., Aboughali, K., & Omeis, I. (2019). Influence of cervical spinal cord injury on thermoregulatory and cardiovascular responses in the human body: Literature review. Journal of Clinical Neuroscience, 69, 714. https://doi.org/10.1016/j.jocn.2019.08.022

    • Search Google Scholar
    • Export Citation
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/ journal.pmed.1000097

    • Search Google Scholar
    • Export Citation
  • Owens, D.J., Allison, R., & Close, G.L. (2018). Vitamin D and the athlete: Current perspectives and new challenges. Sports Medicine, 48(S1), 316. https://doi.org/10.1007/s40279-017-0841-9

    • Search Google Scholar
    • Export Citation
  • Owens, D.J., Webber, D., Impey, S.G., Tang, J., Donovan, T.F., Fraser, W.D., Morton, J.P., & Close, G.L. (2014). Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males. European Journal of Applied Physiology, 114(6), 13091320. https://doi.org/10.1007/s00421-014-2865-2

    • Search Google Scholar
    • Export Citation
  • Perret, C., Mueller, G., & Knecht, H. (2006). Influence of creatine supplementation on 800m wheelchair performance: a pilot study. Spinal Cord, 44(5), 275279. https://doi.org/10.1038/sj.sc.3101840

    • Search Google Scholar
    • Export Citation
  • Pritchett, K., Pritchett, R.C., Stark, L., Broad, E., & LaCroix, M. (2014). Effect of vitamin D supplementation on 25(OH)D status in elite athletes with spinal cord injury. International Journal of Sport Nutrition and Exercise Metabolism, 29(1), 1823. PubMed ID: 29757043 https://doi.org/10.1123/ijsnem.2017-0233

    • Search Google Scholar
    • Export Citation
  • Readdy, W.J., Chan, A.K., Matijakovich, D.J., Dhall, S.D., & LaCroix, M. (2014). A review and update on the guidelines for the acute non-operative management of cervical spinal cord injury. Journal of Neurosurgical Sciences, 59(2), 119128. PubMed ID: 25649067

    • Search Google Scholar
    • Export Citation
  • Rivers, W.H., & Webber, H.N. (2018). The action of caffeine on the capacity for muscular work. The Journal of Physiology, 36(1), 3347. PubMed ID: PMC1533733https://doi.org/10.1113/jphysiol.1907.sp001215

    • Search Google Scholar
    • Export Citation
  • Scaramella, J., Kirihennedige, N., & Broad, E. (2018). Key nutritional strategies to optimize performance in para athletes. Physical Medicine and Rehabilitation Clinics of North America, 29(2), 283298. https://doi.org/10.1016/j.pmr.2018.01.005

    • Search Google Scholar
    • Export Citation
  • Schneiker, K.T., Bishop, D., Dawson, B., & Hackett, L.P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine and Science in Sports and Exercise, 38(3), 578585. https://doi.org/10.1249/01.mss.0000188449.18968.62

    • Search Google Scholar
    • Export Citation
  • Silver, J.R. (2018). The origins of sport for disabled people. The Journal of the Royal College of Physicians of Edinburgh, 48(2), 175180. https://doi.org/10.4997/JRCPE.2018.213

    • Search Google Scholar
    • Export Citation
  • Souza, D.B., Del Coso, J., Casonatto, J., & Polito, M.D. (2017). Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. European Journal of Nutrition, 56(1), 1327. https://doi.org/10.1007/s00394-016-1331-9

    • Search Google Scholar
    • Export Citation
  • Spendiff, O., & Campbell, I. (2005). Influence of pre-exercise glucose ingestion of two concentrations on paraplegic athletes. Journal of Sports Sciences, 23(1), 2130. https://doi.org/10.1080/02640410410001729946

    • Search Google Scholar
    • Export Citation
  • Steenge, G.R., Simpson, E.J., & Greenhaff, P.L. (2000). Protein-and carbohydrate-induced augmentation of whole body creatine retention in humans. Journal of Applied Physiology, 89(3), 11651171. https://doi.org/10.1152/jappl.2000.89.3.1165

    • Search Google Scholar
    • Export Citation
  • Thomas, D.T., Erdman, K.A., & Burke, L.M. (2016). American college of sports medicine joint position statement. Nutrition and athletic performance. Medicine and Science in Sports and Exercise, 48(3), 543568. https://doi.org/10.1249/MSS.0000000000000852

    • Search Google Scholar
    • Export Citation
  • Van Thuyne, W., & Delbeke, F.T. (2006). Distribution of caffeine levels in urine in different sports in relation to doping control before and after the removal of caffeine from the WADA doping list. International Journal of Sports Medicine, 27(09), 745750. https://doi.org/10.1055/s-2005-872921

    • Search Google Scholar
    • Export Citation
  • Vandenberghe, K., Goris, M., Van Hecke, P., Van Leemputte, M., Vangerven, L., & Hespel, P. (1997). Long-term creatine intake is beneficial to muscle performance during resistance training. Journal of Applied Physiology, 83(6), 20552063. https://doi.org/10.1152/jappl.1997.83.6.2055

    • Search Google Scholar
    • Export Citation
  • Wan, X., Wang, W., Liu, J., & Tong, T. (2014). Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology, 14(1), 113. https://doi.org/10.1186/1471-2288-14-135

    • Search Google Scholar
    • Export Citation
  • Wang, C.C., Fang, C.C., Lee, Y.H., Yang, M.T., & Chan, K.H. (2018). Effects of 4-week creatine supplementation combined with complex training on muscle damage and sport performance. Nutrients, 10(11), 1640. https://doi.org/10.3390/nu10111640

    • Search Google Scholar
    • Export Citation
  • Wyon, M.A., Koutedakis, Y., Wolman, R., Nevill, A.M., & Allen, N. (2014). The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers: A controlled study. Journal of Science and Medicine In Sport, 17(1), 812. https://doi.org/10.1016/j.jsams.2013.03.007

    • Search Google Scholar
    • Export Citation
  • Yue, J.K., Chan, A.K., Winkler, E.A., Upadhyayula, P.S., Readdy, W.J., & Dhall, S.S. (2015). A review and update on the guidelines for the acute management of cervical spinal cord injury-Part II. Journal of Neurosurgical Sciences, 60(3), 367384.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4674 2072 227
Full Text Views 71 30 1
PDF Downloads 96 43 1