Time Course Effects of Different Intensities of Running Exercise on Cognitive and Motor Performances in Individuals With Intellectual Disability

in Adapted Physical Activity Quarterly

Click name to view affiliation

Sana Affes Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

Search for other papers by Sana Affes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3094-4868 *
,
Rihab Borji Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

Search for other papers by Rihab Borji in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2740-959X
,
Nidhal Zarrouk Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

Search for other papers by Nidhal Zarrouk in
Current site
Google Scholar
PubMed
Close
,
Thouraya Fendri Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

Search for other papers by Thouraya Fendri in
Current site
Google Scholar
PubMed
Close
,
Sonia Sahli Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

Search for other papers by Sonia Sahli in
Current site
Google Scholar
PubMed
Close
, and
Haithem Rebai Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia

Search for other papers by Haithem Rebai in
Current site
Google Scholar
PubMed
Close
Restricted access

This study explored the acute effects of different running intensities on cognitive and motor performances in individuals with intellectual disability (ID). An ID group (age, M = 15.25 years, SD = 2.76) and a control group without ID (age, M = 15.11 years, SD = 1.54) performed visual simple and choice reaction times, auditory simple reaction time, and finger tapping tests before and after running at low or moderate intensity (30% and 60% of heart rate reserve [HRR], respectively). Visual simple reaction time values decreased (p < .001) after both intensities at all time points with higher (p = .007) extend after the 60% HRR intensity for both groups. After both intensities, the VCRT decreased (p < .001) in the ID group at all time points compared with preexercise (Pre-EX) while, in the control group, these values decreased (p < .001) only immediately (IM-EX) and after 10 min (Post-10) of exercise cessation. Compared withs Pre-EX, in the ID group, the auditory simple reaction time values decreased (p < .001) at all time points after the 30% HHR intensity whereas, after the 60% HRR, these values decreased only at IM-EX (p < .001), Post-10 (p = .001) and Post-20 (p < .001). In the control group, auditory simple reaction time values decreased (p = .002) only after the 30% HRR intensity at IM-EX. The finger tapping test increased at IM-EX (p < .001) and at Post-20 (p = .001) compared to Pre-EX in both groups only after the 30% HHR intensity and for the dominant hand. The effect of physical exercise on cognitive performances in individuals with ID seems to depend on the cognitive test type as well as the exercise intensity.

  • Collapse
  • Expand
  • Affes, S., Borji, R., Zarrouk, N., Sahli, S., & Rebai, H. (2021). Effects of running exercises on reaction time and working memory in individuals with intellectual disability. Journal of Intellectual Disability Research, 65(1), 99112. https://doi.org/10.1111/jir.12798

    • PubMed
    • Search Google Scholar
    • Export Citation
  • American College of Sports Medicine. (1997). ACSM’s exercise management for persons with chronic diseases and disabilities. Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • American College of Sports Medicine. (2010). ACSM’s guidelines for exercise testing and prescription (8th ed.). Lippincott Williams and Wilkins.

    • Search Google Scholar
    • Export Citation
  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.).

  • Atkinson, G. (2001). Analysis of repeated measurements in physical therapy research. Physical Therapy in Sport, 2(4), 194208. https://doi.org/10.1054/ptsp.2001.0071

    • Search Google Scholar
    • Export Citation
  • Audiffren, M., Tomporowski, P.D., & Zagrodnik, J. (2008). Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task. Acta Psychologica, 129(3), 410419. https://doi.org/10.1016/j.actpsy.2008.09.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beck, T.W. (2013). The importance of a priori sample size estimation in strength and conditioning research. The Journal of Strength & Conditioning Research, 27(8), 23232337. https://doi.org/10.1519/JSC.0b013e318278eea0

    • Search Google Scholar
    • Export Citation
  • Beets, M.W., & Pitetti, K.H. (2011). Using pedometers to measure moderate-to-vigorous physical activity for youth with an intellectual disability. Disability and Health Journal, 4(1), 4651. https://doi.org/10.1016/j.dhjo.2010.02.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blasi, F.D.D., Elia, F., Buono, S., Ramakers, G.J., & Nuovo, S.F.D. (2007). Relationships between visual-motor and cognitive abilities in intellectual disabilities. Perceptual and Motor Skills, 104(3), 763772. https://doi.org/10.2466/2Fpms.104.3.763-772

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Blouin, M., & Bergeron, C. (1997). Dictionnaire de la réadaptation, tome 2: Termes d’intervention et d’aides techniques. Publications du Québec.

    • Search Google Scholar
    • Export Citation
  • Botwinick, J., & Thompson, L.W. (1966). Premotor and motor components of reaction time. Journal of Experimental Psychology, 71(1), Article 9. https://doi.org/10.1037/h0022634

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Browne, R.A.V., Costa, E.C., Sales, M.M., Fonteles, A.I., Moraes, J.F.V.N.D., & Barros, J.D.F. (2016). Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents. Revista Paulista de Pediatria, 34, 154161. https://doi.org/10.1016/j.rppede.2016.01.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bruce, R., Kusumi, F., & Hosmer, D. (1973). Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. American Heart Journal, 85(4), 546562. https://doi.org/10.1016/0002-8703(73)90502-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chang, Y.K., Ku, P.W., Tomporowski, P.D., Chen, F.T., & Huang, C.C. (2012). Effects of acute resistance exercise on late-middle-age adults’ goal planning. Medicine & Science in Sports & Exercise, 44(9), 17731779. https://doi.org/0b013e3182574e0b

    • Search Google Scholar
    • Export Citation
  • Chen, C.C., & Ringenbach, S. (2016). Dose–response relationship between intensity of exercise and cognitive performance in individuals with Down syndrome: A preliminary study. Journal of Intellectual Disability Research, 60(6), 606614. https://doi.org/10.1111/jir.12258

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chmura, J., Krysztofiak, H., Ziemba, A.W., Nazar, K., & Kaciuba-Uścilko, H. (1997). Psychomotor performance during prolonged exercise above and below the blood lactate threshold. European Journal of Applied Physiology and Occupational Physiology, 77(1), 7780. https://doi.org/10.1007/s004210050303

    • Search Google Scholar
    • Export Citation
  • Chmura, J., Nazar, K., & Kaciuba-Uścilko, H. (1994). Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. International Journal of Sports Medicine, 15(4), 172176. https://doi.org/10.1055/s-2007-1021042

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Laurence Erlbaum Associates, Publishers.

  • Collins, L.F., & Long, C.J. (1996). Visual reaction time and its relationship to neuropsychological test performance. Archives of Clinical Neuropsychology, 11(7), 613623. https://doi.org/10.1016/0887-6177(97)81255-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Croce, R., & Harvat, M. (1995). Exercise-induced activation and cognitive processing in individuals with mental retardation. In A. Vermeer and W.E. Davis (Eds.), Physical and motor development in mental retardation (pp. 144151). Karger Publishers. https://doi.org/10.1159/000424524

    • Search Google Scholar
    • Export Citation
  • Danielsson, H., Henry, L., Rönnberg, J., & Nilsson, L.G. (2010). Executive functions in individuals with intellectual disability. Research in Developmental Disabilities, 31(6), 12991304. https://doi.org/10.1016/j.ridd.2010.07.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davranche, K., Burle, B., Audiffren, M., & Hasbroucq, T. (2005). Information processing during physical exercise: A chronometric and electromyographic study. Experimental Brain Research, 165(4), 532540. https://doi.org/10.1007/s00221-005-2331-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Davranche, K., Burle, B., Audiffren, M., & Hasbroucq, T. (2006). Physical exercise facilitates motor processes in simple reaction time performance: An electromyographic analysis. Neuroscience Letters, 396(1), 5456. https://doi.org/10.1016/j.neulet.2005.11.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dragovic, M., & Hammond, G. (2007). A classification of handedness using the Annett Hand preference questionnaire. British Journal of Psychology, 98(3), 375387. https://doi.org/10.1348/000712606X146197

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Draheim, C., Mashburn, C.A., Martin, J.D., & Engle, R.W. (2019). Reaction time in differential and developmental research: A review and commentary on the problems and alternatives. Psychological Bulletin, 145(5), Article 508. https://doi.org/10.1037/bul0000192

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dupuy, O., Billaut, F., Raymond, F., Benraiss, A., Theurot, D., Bosquet, L., ... Tremblay, J. (2018). Effect of acute intermittent exercise on cognitive flexibility: The role of exercise intensity. Journal of Cognitive Enhancement, 2(2), 146156. https://doi.org/10.1007/s41465-018-0078-z

    • Search Google Scholar
    • Export Citation
  • Emery, C.F., Honn, V.J., Frid, D.J., Lebowitz, K.R., & Diaz, P.T. (2001). Acute effects of exercise on cognition in patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 164(9), 16241627. https://doi.org/10.1164/ajrccm.164.9.2104137

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Etnier, J.L., & Chang, Y.K. (2009). The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sport and Exercise Psychology, 31(4), 469483. https://doi.org/10.1123/jsep.31.4.469

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. https://doi.org/10.3758/bf03193146

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernhall, B., & Tymeson, G. (1987). Graded exercise testing of mentally retarded adults: A study of feasibility. Archives of Physical Medicine and Rehabilitation, 68(6), 363365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fernhall, B.O., McCubbin, J.A., Pitetti, K.H., Rintala, P., Rimmer, J.H., Millar, A.L., & De Silva, A. (2001). Prediction of maximal heart rate in individuals with mental retardation. Medicine & Science in Sports & Exercise, 33(10), 16551660. https://doi.org/10.1097/00005768-200110000-00007

    • Search Google Scholar
    • Export Citation
  • Fox, S.M., III, Naughton, J.P., & Haskell, W.L. (1971). Physical activity and the prevention of coronary heart disease. Annals of Clinical Research, 3(6), 404432.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frey, G.C., Stanish, H.I., & Temple, V.A. (2008). Physical activity of youth with intellectual disability: Review and research agenda. Adapted Physical Activity Quarterly, 25(2), 95117. https://doi.org/10.1123/apaq.25.2.95

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Girden, E.R. (1992). ANOVA: Repeated measures (No. 84). Sage.

  • Haishi, K., Okuzumi, H., & Kokubun, M. (2011). Effects of age, intelligence and executive control function on saccadic reaction time in persons with intellectual disabilities. Research in Developmental Disabilities, 32(6), 26442650. https://doi.org/10.1016/j.ridd.2011.06.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hasbroucq, T., Tandonnet, C., Micallef-Roll, J., Blin, O., & Possamaï, C.A. (2003). An electromyographic analysis of the effect of levodopa on the response time of healthy subjects. Psychopharmacology, 165(3), 313316. https://doi.org/10.1007/s00213-002-1304-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hattori, S., Naoi, M., & Nishino, H. (1994). Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Research Bulletin, 35(1), 4149. https://doi.org/10.1016/0361-9230(94)90214-3

    • Search Google Scholar
    • Export Citation
  • Hronis, A., Roberts, L., & Kneebone, I.I. (2017). A review of cognitive impairments in children with intellectual disabilities: Implications for cognitive behaviour therapy. British Journal of Clinical Psychology, 56(2), 189207. https://doi.org/10.1111/bjc.12133

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Huertas, F., Zahonero, J., Sanabria, D., & Lupiáñez, J. (2011). Functioning of the attentional networks at rest vs. during acute bouts of aerobic exercise. Journal of Sport and Exercise Psychology, 33(5), 649665. https://doi.org/10.1123/jsep.33.5.649

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Inui, N., Yamanishi, M., & Tada, S. (1995). Simple reaction times and timing of serial reactions of adolescents with mental retardation, autism, and Down syndrome. Perceptual and Motor Skills, 81(3), 739745. https://doi.org/10.2466/pms.1995.81.3.739

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jarraya, S., & Jarraya, M. (2019). The effects of music and the time-of-day on cognitive abilities of tennis player. International Journal of Sport and Exercise Psychology, 17(3), 185196. https://doi.org/10.1080/1612197X.2017.1292299

    • Search Google Scholar
    • Export Citation
  • Jarraya, S., Jarraya, M., & Souissi, N. (2014). Diurnal variations of cognitive performances in Tunisian children. Biological Rhythm Research, 45(1), 6167. https://doi.org/10.1080/09291016.2013.797640

    • Search Google Scholar
    • Export Citation
  • Joyce, J., Graydon, J., McMorris, T., & Davranche, K. (2009). The time course effect of moderate intensity exercise on response execution and response inhibition. Brain and Cognition, 71(1), 1419. https://doi.org/10.1016/j.bandc.2009.03.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Karvonen, M.J. (1957). The effects of training on heart rate: A longitudinal study. Annales Medicinae Experimentalis et Biologiae Fenniae, 35(3), 307315.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kashihara, K., & Nakahara, Y. (2005). Short-term effect of physical exercise at lactate threshold on choice reaction time. Perceptual and Motor Skills, 100(2), 275291. https://doi.org/10.2466/pms.100.2.275-291

    • PubMed
    • Search Google Scholar
    • Export Citation
  • King, M., Shields, N., Imms, C., Black, M., & Ardern, C. (2013). Participation of children with intellectual disability compared with typically developing children. Research in Developmental Disabilities, 34(5), 18541862. https://doi.org/10.1016/j.ridd.2013.02.029

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Klotz, J.M., Johnson, M.D., Wu, S.W., Isaacs, K.M., & Gilbert, D.L. (2012). Relationship between reaction time variability and motor skill development in ADHD. Child Neuropsychology, 18(6), 576585. https://doi.org/10.1080/09297049.2011.625356

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kosinski, R.J. (2008). A literature review on reaction time. Clemson University, 10(1), 337344.

  • Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 1224. https://doi.org/10.1016/j.brainres.2010.03.091

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee, J.J., & Chabris, C.F. (2013). General cognitive ability and the psychological refractory period: Individual differences in the mind’s bottleneck. Psychological Science, 24(7), 12261233. https://doi.org/10.1177/0956797612471540

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Luce, R.D. (1986). Response times: Their role in inferring elementary mental organization (No. 8). Oxford University Press on Demand.

  • McGrew, K.S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 110. https://doi.org/10.1016/j.intell.2008.08.004

    • Search Google Scholar
    • Export Citation
  • McMorris, T., Collard, K., Corbett, J., Dicks, M., & Swain, J.P. (2008). A test of the catecholamines hypothesis for an acute exercise–cognition interaction. Pharmacology Biochemistry and Behavior, 89(1), 106115. https://doi.org/10.1016/j.pbb.2007.11.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mendonca, G.V., & Pereira, F.D. (2010). Heart rate recovery after exercise in adults with the Down syndrome. The American Journal of Cardiology, 105(10), 14701473. https://doi.org/10.1016/j.amjcard.2009.12.073

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mohan, A., Singh, A.P., & Mandal, M.K. (2001). Transfer and interference of motor skills in people with intellectual disability. Journal of Intellectual Disability Research, 45(4), 361369. https://doi.org/10.1046/j.1365-2788.2001.00341.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mungkhetklang, C., Crewther, S.G., Bavin, E.L., Goharpey, N., & Parsons, C. (2016). Comparison of measures of ability in adolescents with intellectual disability. Frontiers in Psychology, 7, Article 683. https://doi.org/10.3389/fpsyg.2016.0068

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nota, L., Ferrari, L., Soresi, S., & Wehmeyer, M. (2007). Self‐determination, social abilities and the quality of life of people with intellectual disability. Journal of Intellectual Disability Research, 51(11), 850865. https://doi.org/10.1111/j.1365-2788.2006.00939.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oppewal, A., Hilgenkamp, T.I., van Wijck, R., & Evenhuis, H.M. (2014). Heart rate recovery after the 10-m incremental shuttle walking test in older adults with intellectual disabilities. Research in Developmental Disabilities, 35(3), 696704. https://doi.org/10.1016/j.ridd.2013.12.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Palix, J., Giuliani, F., Sierro, G., Brandner, C., & Favrod, J. (2020). Temporal regularity of cerebral activity at rest correlates with slowness of reaction times in intellectual disability. Clinical Neurophysiology, 131(8), 18591865. https://doi.org/10.1016/j.clinph.2020.04.174

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patston, L.L., Hogg, S.L., & Tippett, L.J. (2007). Attention in musicians is more bilateral than in non-musicians. Laterality, 12(3), 262272. https://doi.org/10.1080/13576500701251981

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pitetti, K.H., Jongmans, B., & Fernhall, B. (1999). Feasibility of a treadmill test for adolescents with multiple disabilities. Adapted Physical Activity Quarterly, 16(4), 362371. https://doi.org/10.1123/apaq.16.4.362

    • Search Google Scholar
    • Export Citation
  • Ringenbach, S.D., Albert, A.R., Chen, C.C., & Alberts, J.L. (2014). Acute bouts of assisted cycling improves cognitive and upper extremity movement functions in adolescents with Down syndrome. Mental Retardation, 52(2), 124135. https://doi.org/10.1352/1934-9556-52.2.124

    • Search Google Scholar
    • Export Citation
  • Smith, J.C., Paulson, E.S., Cook, D.B., Verber, M.D., & Tian, Q. (2010). Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: Implications for fMRI. Journal of Neuroscience Methods, 191(2), 258262. https://doi.org/10.1016/j.jneumeth.2010.06.028

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Souissi, M., Abedelmalek, S., Chtourou, H., Atheymen, R., Hakim, A., & Sahnoun, Z. (2012). Effects of morning caffeine’ingestion on mood states, simple reaction time, and short-term maximal performance on elite judoists. Asian Journal of Sports Medicine, 3(3), Article 161. https://doi.org/10.5812/asjsm.34607

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Souissi, M., Chtourou, H., Abedelmalek, S., Ghozlane, I.B., & Sahnoun, Z. (2014). The effects of caffeine ingestion on the reaction time and short-term maximal performance after 36 h of sleep deprivation. Physiology & Behavior, 131, 16. https://doi.org/10.1016/j.physbeh.2014.04.012

    • Search Google Scholar
    • Export Citation
  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276315. https://doi.org/10.1016/0001-6918(69)90055-9

    • Search Google Scholar
    • Export Citation
  • Sysoeva, O.V., Wittmann, M., Mierau, A., Polikanova, I., Strüder, H.K., & Tonevitsky, A. (2013). Physical exercise speeds up motor timing. Frontiers in Psychology, 4, Article 612. https://doi.org/10.3389/fpsyg.2013.00612

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thayer, J.F., Hansen, A.L., Saus-Rose, E., & Johnsen, B.H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141153. https://doi.org/10.1007/s12160-009-9101-z

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297324. https://doi.org/10.1016/S0001-6918(02)00134-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Biesen, D., Mactavish, J., McCulloch, K., Lenaerts, L., & Vanlandewijck, Y.C. (2016). Cognitive profile of young well-trained athletes with intellectual disabilities. Research in Developmental Disabilities, 53, 377390. https://doi.org/10.1016/j.ridd.2016.03.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Van Biesen, D., McCulloch, K., Janssens, L., & Vanlandewijck, Y.C. (2017). The relation between intelligence and reaction time in tasks with increasing cognitive load among athletes with intellectual impairment. Intelligence, 64, 4551. https://doi.org/10.1016/j.intell.2017.06.005

    • Search Google Scholar
    • Export Citation
  • Van der Hoeven, J.H., & Lange, F. (1994). Supernormal muscle fiber conduction velocity during intermittent isometric exercise in human muscle. Journal of Applied Physiology, 77(2), 802806.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der Molen, M.W., Bashore, T.R., Halliday, R., & Callaway, E. (1991). Chronopsychophysiology: Mental chronometry augmented by physiological time markers. In J.R. Jennings & M.G.H. Coles (Eds.), Handbook of cognitive psychophysiology: Central and autonomic nervous system approaches (pp. 9178). John Wiley & Sons Ltd.

    • Search Google Scholar
    • Export Citation
  • Vogt, T., Schneider, S., Abeln, V., Anneken, V., & Strüder, H.K. (2012). Exercise, mood and cognitive performance in intellectual disability—A neurophysiological approach. Behavioural Brain Research, 226(2), 473480. https://doi.org/10.1016/j.bbr.2011.10.015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vogt, T., Schneider, S., Anneken, V., & Strüder, H.K. (2013). Moderate cycling exercise enhances neurocognitive processing in adolescents with intellectual and developmental disabilities. Research in Developmental Disabilities, 34(9), 27082716. https://doi.org/10.1016/j.ridd.2013.05.037

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wechsler, D. (2003). Wechsler intelligence scale for children–fourth edition: Technical and interpretive manual. Psychological Corporation.

    • Search Google Scholar
    • Export Citation
  • Welford, A. (1980). Choice reaction time: Basic concepts. Reaction Times, 73128.

  • Wohlwend, M., Olsen, A., Håberg, A.K., & Palmer, H.S. (2017). Exercise intensity-dependent effects on cognitive control function during and after acute treadmill running in young healthy adults. Frontiers in Psychology, 8, Article 406. https://doi.org/10.3389/fpsyg.2017.00406

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Woods, D.L., Wyma, J.M., Yund, E.W., Herron, T.J., & Reed, B. (2015). Factors influencing the latency of simple reaction time. Frontiers in Human Neuroscience, 9, Article 131. https://doi.org/10.3389/fnhum.2015.00131

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wuang, Y.P., Wang, C.C., Huang, M.H., & Su, C.Y. (2008). Profiles and cognitive predictors of motor functions among early school‐age children with mild intellectual disabilities. Journal of Intellectual Disability Research, 52(12), 10481060. https://doi.org/10.1111/j.1365-2788.2008.01096.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yagi, Y., Coburn, K.L., Estes, K.M., & Arruda, J.E. (1999). Effects of aerobic exercise and gender on visual and auditory P300, reaction time, and accuracy. European Journal of Applied Physiology and Occupational Physiology, 80(5), 402408. https://doi.org/10.1007/s004210050611

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zouhal, H., Jacob, C., Delamarche, P., & Gratas-Delamarche, A. (2008). Catecholamines and the effects of exercise, training and gender. Sports Medicine, 38(5), 401423. https://doi.org/10.2165/00007256-200838050-00004

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1495 1495 427
Full Text Views 34 34 11
PDF Downloads 27 27 4