The Relationship Between Concentric Hip Abductor Strength and Performance of the Y-Balance Test (YBT)

in International Journal of Athletic Therapy and Training
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $188.00

Side-lying hip abduction is an action used during manual muscle testing and is also prescribed as a rehabilitation exercise to improve dynamic single-leg stability. Little is known about the functional cross-over of this activity. The aims of this study were to investigate the relationship between concentric hip abductor strength and performance of the Y-Balance test (YBT). Forty-five recreational gym users (27 male, age 26.2 [8.4] years; 18 female, age 27.4 [7.5] years) had dynamic single-leg stability and concentric hip abductor peak torque assessed in the nondominant limb using a YBT and isokinetic dynamometry, respectively. All components of the YBT had a moderate association with concentric hip abductor torque which were greater in the posteromedial (r = .574, p > .001) and posterolateral (r = .657, p > .001) directions compared to the anterior direction (r = .402, p = .006). Greater concentric hip abductor strength is associated with greater scores on components of the YBT, particularly the posterior reaches.

Peter Francis is with the Musculoskeletal Health Research Group, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom. Kay Gray is with the Department of Sport and Health Science, University of St. Mark and St. John, Plymouth, United Kingdom. Nic Perrem is with the School of Sport, Health and Applied Science, St Mary’s University, Twickenham, London, United Kingdom. Jeffrey B. Driban, PhD, ATC, CSCS, Tufts University, is the report editor for this article.

Address author correspondence to Peter Francis at peter.francis@leedsbeckett.ac.uk.
International Journal of Athletic Therapy and Training
Article Sections
References
  • 1.

    Plisky PJRauh MJKaminski TWUnderwood FB. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther. 2006;36(12):911919. PubMed doi:10.2519/jospt.2006.2244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Patla AE. Strategies for dynamic stability during adaptive human locomotion. IEEE Eng Med Biol Mag. 2003;22(2):4852. PubMed doi:10.1109/MEMB.2003.1195695

  • 3.

    Lee SPPowers CM. Individuals with diminished hip abductor muscle strength exhibit altered ankle biomechanics and neuromuscular activation during unipedal balance tasks. Gait Posture. 2014;39(3):933938. PubMed doi:10.1016/j.gaitpost.2013.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Klemetti RSteele KMMoilanen PAvela JTimonen J. Contributions of individual muscles to the sagittal- and frontal-plane angular accelerations of the trunk in walking. J Biomech. 2014;47(10):22632268. PubMed doi:10.1016/j.jbiomech.2014.04.052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hewett TEMyer GDFord KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299311. PubMed doi:10.1177/0363546505284183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Souza RBPowers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):1219. PubMed doi:10.2519/jospt.2009.2885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McKenzie KGalea VWessel JPierrynowski M. Lower extremity kinematics of females with patellofemoral pain syndrome while stair stepping. J Orthop Sports Phys Ther. 2010;40(10):625632. PubMed doi:10.2519/jospt.2010.3185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2):4251. PubMed doi:10.2519/jospt.2010.3337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hewett TEMyer GDFord KRet al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dierks TAManal KTHamill JDavis IS. Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. J Orthop Sports Phys Ther. 2008;38(8):448456. PubMed doi:10.2519/jospt.2008.2490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dostal WFSoderberg GLAndrews JG. Actions of hip muscles. Phys Ther. 1986;66(3):351359. PubMed doi:10.1093/ptj/66.3.351

  • 12.

    Hubbard TJKramer LCDenegar CRHertel J. Correlations among multiple measures of functional and mechanical instability in subjects with chronic ankle instability. J Athl Train. 2007;42(3):361366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lee DKKim GMHa SMOh JS. Correlation of the Y-Balance Test with lower-limb strength of adult women. J Phys Ther Sci. 2014;26(5):641643. PubMed doi:10.1589/jpts.26.641

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Boren KConrey CLe Coguic JPaprocki LVoight MRobinson TK. Electromyographic analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J Sports Phys Ther. 2011;6(3):206223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Distefano LJBlackburn JTMarshall SWPadua DA. Gluteal muscle activation during common therapeutic exercises. J Orthop Sports Phys Ther. 2009;39(7):532540. PubMed doi:10.2519/jospt.2009.2796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Deones VLWiley SCWorrell T. Assessment of quadriceps muscle performance by a hand-held dynamometer and an isokinetic dynamometer. J Orthop Sports Phys Ther. 1994;20(6):296301. PubMed doi:10.2519/jospt.1994.20.6.296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Francis PToomey CMc Cormack WLyons MJakeman P. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women. Clin Physiol Funct Imaging. 2017;37(4):448455. PubMed doi:10.1111/cpf.12332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ireland MLWillson JDBallantyne BTDavis IM. Hip strength in females with and without patellofemoral pain. J Orthop Sports Phys Ther. 2003;33(11):671676. PubMed doi:10.2519/jospt.2003.33.11.671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    DiMattia MALivengood ALUhl TLMattacola CGMalone TR. What are the validity of the single-leg-squat test and its relationship to hip-abduction strength? J Sport Rehabil. 2005;14(2):108123. doi:10.1123/jsr.14.2.108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Boling MCPadua DACreighton RA. Concentric and eccentric torque of the hip musculature in individuals with and without patellofemoral pain. J Athl Train. 2009;44(1):713. doi:10.4085/1062-6050-44.1.7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Baldon Rde MNakagawa THMuniz TBAmorim CFMaciel CDSerrao FV. Eccentric hip muscle function in females with and without patellofemoral pain syndrome. J Athl Train. 2009;44(5):490496. doi:10.4085/1062-6050-44.5.490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Munro AGHerrington LC. Between-session reliability of the star excursion balance test. Phys Ther Sport. 2010;11(4):128132. doi:10.1016/j.ptsp.2010.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hertel JMiller SJDenegar CR. Intratester and intertester reliability during the Star Excursion Balance Tests. J Sport Rehabil. 2000;9(2):104116. doi:10.1123/jsr.9.2.104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Coughlan GFFullam KDelahunt EGissane CCaulfield BM. A comparison between performance on selected directions of the star excursion balance test and the Y Balance Test. J Athl Train. 2012;47(4):366371. doi:10.4085/1062-6050-47.4.03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Heinert BLKernozek TWGreany JFFater DC. Hip abductor weakness and lower extremity kinematics during running. J Sport Rehabil. 2008;17(3):243256. doi:10.1123/jsr.17.3.243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Thorstensson AGrimby GKarlsson J. Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Phys. 1976;40(1):1216. PubMed

    • Search Google Scholar
    • Export Citation
  • 27.

    McBeth JMEarl-Boehm JECobb SCHuddleston WE. Hip muscle activity during 3 side-lying hip-strengthening exercises in distance runners. J Athl Train. 2012;47(1):1523. PubMed doi:10.4085/1062-6050-47.1.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gordon ATAmbegaonkar JPCaswell SV. Relationships between core strength, hip external rotator muscle strength, and star excursion balance test performance in female lacrosse players. Int J Sports Phys Ther. 2013;8(2):97104. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lepley ASStrouse AMEricksen HMPfile KRGribble PAPietrosimone BG. Relationship between gluteal muscle strength, corticospinal excitability, and jump-landing biomechanics in healthy women. J Sport Rehabil. 2013;22(4):239247. doi:10.1123/jsr.22.4.239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Baker JSMcCormick MCRobergs RA. Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab. 2010;2010:113. doi:10.1155/2010/905612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Perrin DH. Isokinetic Exercise and Assessment. Champaign, IL: Human Kinetics; 1993.

  • 32.

    Kang MHKim GMKwon OYWeon JHOh JSAn DH. Relationship between the kinematics of the trunk and lower extremity and performance on the Y-Balance Test. PM R. 2015;7(11):11521158. PubMed doi:10.1016/j.pmrj.2015.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Noorkoiv MNosaka KBlazevich AJ. Effects of isometric quadriceps strength training at different muscle lengths on dynamic torque production. J Sports Sci. 2015;33(18):19521961. PubMed doi:10.1080/02640414.2015.1020843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Miller PKBird AM. Localized muscle fatigue and dynamic balance. Percept Mot Skills. 1976;42(1):135138. PubMed doi:10.2466/pms.1976.42.1.135

  • 35.

    Gribble PAHertel J. Effect of hip and ankle muscle fatigue on unipedal postural control. J Electromyogr Kinesiol. 2004;14(6):641646. PubMed doi:10.1016/j.jelekin.2004.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gribble PAHertel J. Effect of lower-extremity muscle fatigue on postural control. Arch Phys Med Rehabil. 2004;85(4):589592. doi:10.1016/j.apmr.2003.06.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 66 66 32
Full Text Views 0 0 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar