Reliability of Using a Handheld Tablet to Analyze Lower Extremity Landing Mechanics During Drop Vertical Jumps

in International Journal of Athletic Therapy and Training
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $188.00

Analyzing lower extremity (LE) landing mechanics is a main component of the screening process for athletes predisposed to injury. However, easily accessible and reliable tools for this process in a clinical setting need to be established. The purpose of this study was to determine the effect of differentiations in positioning of the iPad and evaluator on the reliability of an iPad to analyze LE landing mechanics during drop vertical jumps (DVJs). The results illustrate that iPads are reliable tools that can be used to capture and analyze DVJs. In addition, the exact positioning of the evaluator does not make a significant difference in the outcome. The results suggest that iPads are a practical and reliable alternative to traditional video analysis.

Calo is an inside sales representative with Condeco, New York, NY. Anania is a graduate student in Athletic Training at University of South Florida, Tampa, FL. Bello is a physical therapist working with the New York Yankees Organization, Bronx, NY. Cohen is a graduate student in Exercise Science at Ithaca College, Ithaca, NY. Stack is with Professional Physical Therapy, Long Island, NY. Wells is a doctoral student in Biomechanics at Georgia State University, Atlanta, GA. Belyea is with the Physical Therapy Department at Ithaca College, Ithaca, NY. King and Medina McKeon are with the Exercise & Sport Sciences Department at Ithaca College, Ithaca, NY. All research was completed at Ithaca College.

Medina McKeon (jmckeon@ithaca.edu) is corresponding author.
  • 1.

    Munro A, Herrington L, Comfort P. Comparison of landing knee valgus angle between female basketball and football athletes: possible implications for anterior cruciate ligament and patellofemoral joint injury rates. Phys Ther Sport. 2012;2012(13):4.

    • Search Google Scholar
    • Export Citation
  • 2.

    Weiss K, Whatman C. Biomechanics associated with patellofemoral pain and ACL injuries in sports. Sports Med. 2015;45(9):1325–1337. PubMed ID: 26130304 doi:10.1007/s40279-015-0353-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mason-Mackay AR, Whatman C, Reid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: a systematic review. J Sci Med Sport. 2017;20(5):451–458. PubMed ID: 26117159 doi:10.1016/j.jsams.2015.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bakker R, Tomescu S, Brenneman E, Hangalur G, Laing A, Chandrashekar N. Effect of sagittal plane mechanics on ACL strain during jump landing. J Orthop Res. 2016;34(99):1636–1644. doi:10.1002/jor.23164

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007;35(2):235–241. PubMed ID: 17092926 doi:10.1177/0363546506294077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pollard CD, Sigward SM, Powers CM. Gender differences in hip joint kinematics and kinetics during side-step cutting maneuver. Clin J Sport Med. 2007;17(1):38–42. PubMed ID: 17304004 doi:10.1097/JSM.0b013e3180305de8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Drewes LK, McKeon PO, Kerrigan DC, Hertel J. Dorsiflexion deficit during jogging with chronic ankle instability. J Sci Med Sport. 2009;12(6):685–687. PubMed ID: 18835218 doi:10.1016/j.jsams.2008.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Salci Y, Kentel BB, Heycan C, Akin S, Korkusuz F. Comparison of landing maneuvers between male and female college volleyball players. Clin Biomech (Bristol, Avon). 2004;19(6):622–628. doi:10.1016/j.clinbiomech.2004.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc. 2003;35(10):1745–1750. PubMed ID: 14523314 doi:10.1249/01.MSS.0000089346.85744.D9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ford KR, Myer GD, Hewett TE. Reliability of landing 3D motion analysis: implications for longitudinal analyses. Med Sci Sports Exerc. 2007;39(11):2021–2028. PubMed ID: 17986911 doi:10.1249/mss.0b013e318149332d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McLean SG, Walker K, Ford KR, Myer GD, Hewett TE, van den Bogert AJ. Evaluation of a two dimensional analysis method as a screening and evaluation tool for anterior cruciate ligament injury. Br J Sports Med. 2005;39(6):355–362. PubMed ID: 15911607 doi:10.1136/bjsm.2005.018598

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mizner RL, Chmielewski TL, Toepke JJ, Tofte KB. Comparison of 2-dimensional measurement techniques for predicting knee angle and moment during a drop vertical jump. Clin J Sport Med. 2012;22(3):221–227. PubMed ID: 22544058 doi:10.1097/JSM.0b013e31823a46ce

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Munro A, Herrington L, Carolan M. Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil. 2012;21(1):7–11. PubMed ID: 22104115 doi:10.1123/jsr.21.1.7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Norris BS, Olson SL. Concurrent validity and reliability of two-dimensional video analysis of hip and knee joint motion during mechanical lifting. Physiother Theory Pract. 2011;27(7):521–530. PubMed ID: 21568816 doi:10.3109/09593985.2010.533745

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Myer GD, Ford KR, Khoury J, Hewett TE. Three-dimensional motion analysis validation of a clinic-based nomogram designed to identify high ACL injury risk in female athletes. Phys Sportsmed. 2011;39(1):19–28. PubMed ID: 21378483 doi:10.3810/psm.2011.02.1858

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE, Beutler AI. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med. 2009;37(10):1996–2002. PubMed ID: 19726623 doi:10.1177/0363546509343200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med. 2010;38(10):2025–2033. PubMed ID: 20595554 doi:10.1177/0363546510370933

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Myer GD, Ford KR, Hewett TE. Tuck jump assessment for reducing anterior cruciate ligament injury risk. Athl Ther Today. 2008;13(5):39–44. PubMed ID: 19936042 doi:10.1123/att.13.5.39

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Padua DA, Bolling MC, DiStefano LJ, Onate JA, Beutler AI, Marshall SW. Reliability of the Landing Error Scoring System – real time, a clinical assessment tool of jump-landing biomechanics. J Sport Rehabil. 2011;20(2):145–156. PubMed ID: 21576707 doi:10.1123/jsr.20.2.145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Whatman C, Hume P, Hing W. The reliability and validity of physiotherapist visual rating of dynamic pelvis and knee alignment in young athletes. Phys Ther Sport. 2013;14(3):168–174. PubMed ID: 23107340 doi:10.1016/j.ptsp.2012.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Harris-Hayes M, Steger-May K, Koh C, Royer NK, Graci V, Salsich GB. Classification of lower extremity movement patterns based on visual assessment: reliability and correlation with 2-dimensional video analysis. J Athl Train. 2014;49(3):304–310. PubMed ID: 24955621 doi:10.4085/1062-6050-49.2.21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Maclachlan L, White SG, Reid D. Observer rating versus three-dimension motion analysis of lower extremity kinematics during functional screening tests: a systematic review. Int J Sports Phys Ther. 2015;10(4):482–492. PubMed ID: 26346642

    • Search Google Scholar
    • Export Citation
  • 24.

    Ekegren CL, Miller WC, Celebrini RG, Eng JJ, Macintyre DL. Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J Orthop Sports Phys Ther. 2009;39(9):665–674. PubMed ID: 19721212 doi:10.2519/jospt.2009.3004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Krause DA, Boyd MS, Hager AN, Smoyer EC, Thompson AT, Hollman JH. Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test. Int J Sports Phys Ther. 2015;10(1):37–44. PubMed ID: 25709861

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Belyea BC, Lewis E, Gabor Z, Jackson J, King DL. Validity and intra-rater reliability of 2-dimensional motion analysis using a hand-held tablet compared to traditional 3-dimensional motion analysis. J Sport Rehabil. 2015;24(4):pii: 2014-0194. doi:10.1123/jsr.2014-0194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    King DL, Belyea BC. Reliability of using a handheld tablet and application to measure lower-extremity alignment angles. J Sport Rehabil. 2015;T24(4):pii: 2014-0195. doi:10.1123/jsr.2014-0195

    • Search Google Scholar
    • Export Citation
  • 28.

    Herrington L, Alenezi F, Alzhrani M, Alrayani H, Jones R. The reliability and criterion validity of 2D video assessment of single leg squat and hop landing. J Electromyogr Kinesiol. 2017;34:80–85. PubMed ID: 28437781 doi:10.1016/j.jelekin.2017.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Schreurs MJ, Benjaminse A, Lemmink KAPM. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes. J Biomech. 2017;63:144–150. doi:10.1016/j.jbiomech.2017.08.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573–578. PubMed ID: 10875418

  • 31.

    Sheehan FT, Sipprell WH 3rd, Boden BP. Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am J Sports Med. 2012;40(5):1068–1074. PubMed ID: 22383659 doi:10.1177/0363546512437850

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Carlson VR, Sheehan FT, Boden BP. Video Analysis of Anterior Cruciate Ligament (ACL) injuries: a systematic review. JBJS Rev. 2016;4(11):pii: 10.2106/JBJS.RVW.15.00116. doi:10.2106/JBJS.RVW.15.00116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, Marshall SW. The Landing Error Scoring System as a screening tool for an anterior cruciate ligament injury-prevention program in Elite-Youth Soccer Athletes. J Athl Train. 2015;50(6):589–595. PubMed ID: 25811846 doi:10.4085/1062-6050-50.1.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Koga H, Nakamae A, Shima Y, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38(11):2218–2225. PubMed ID: 20595545 doi:10.1177/0363546510373570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dai B, Mao M, Garrett WEJ, Yu B. Biomechanical characteristics of an anterior cruciate ligament injury in Javelin throwing. J Sport Health Sci. 2015;4(4):333–340. doi:10.1016/j.jshs.2015.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Shimokochi Y, Shultz SJ. Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train. 2008;43(4):396–408. PubMed ID: 18668173 doi:10.4085/1062-6050-43.4.396

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Alentorn-Geli E, Myer GD, Silvers HJ, et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):705–729. PubMed ID: 19452139 doi:10.1007/s00167-009-0813-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon). 2010;25(2):142–146. doi:10.1016/j.clinbiomech.2009.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Beynnon BD, Fleming BC. Anterior cruciate ligament strain in-vivo: a review of previous work. J Biomech. 1998;31(6):519–525. PubMed ID: 9755036 doi:10.1016/S0021-9290(98)00044-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Escamilla RF, Zheng N, MacLeod TD, et al. Cruciate ligament tensile forces during the forward and side lunge. Clin Biomech (Bristol, Avon). 2010;25(3):213–221. doi:10.1016/j.clinbiomech.2009.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Heijne A, Fleming BC, Renstrom PA, Peura GD, Beynnon BD, Werner S. Strain on the anterior cruciate ligament during closed kinetic chain exercises. Med Sci Sports Exerc. 2004;36(6):935–941. PubMed ID: 15179161 doi:10.1249/01.MSS.0000128185.55587.A3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30(2):261–267. PubMed ID: 11912098 doi:10.1177/03635465020300021901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Pappas E, Sheikhzadeh A, Hagins M, Nordin M. The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values. J Sports Sci Med. 2007;6(1):77–84. PubMed ID: 24149228

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3):445–455. PubMed ID: 16282579 doi:10.1177/0363546505281241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Pollard CD, Sigward SM, Powers CM. ACL injury prevention training results in modification of hip and knee mechanics during a drop-landing task. Orthop J Sports Med. 2017;5(9):2325967117726267. PubMed ID: 28959697 doi:10.1177/2325967117726267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Nagano Y, Ida H, Akai M, Fukubayashi T. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study. Sports Med Arthrosc Rehabil Ther Technol. 2011;3(1):14. doi:10.1186/1758-2555-3-14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Konor MM, Morton S, Eckerson JM, Grindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7(3):279–287. PubMed ID: 22666642

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Brosseau L, Tousignant M, Budd J, et al. Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int. 1997;2(3):150–166. PubMed ID: 9421820 doi:10.1002/pri.97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Gogia PP, Braatz JH, Rose SJ, Norton BJ. Reliability and validity of goniometric measurements at the knee. Phys Ther. 1987;67(2):192–195. PubMed ID: 3809242 doi:10.1093/ptj/67.2.192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Milanese S, Gordon S, Buettner P, et al. Reliability and concurrent validity of knee angle measurement: smart phone app versus universal goniometer used by experienced and novice clinicians. Man Ther. 2014;19(6):569–574. PubMed ID: 24942491 doi:10.1016/j.math.2014.05.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 105 105 8
Full Text Views 43 43 11
PDF Downloads 8 8 1