Altered Vertical Ground Reaction Force Components While Walking in Individuals With Chronic Ankle Instability

in International Journal of Athletic Therapy and Training
View More View Less
  • 1 University of North Carolina at Chapel Hill
  • 2 University of Florida
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Aberrant loading is a mechanism by which individuals with chronic ankle instability (CAI) may negatively impact cartilage health and therefore long-term health outcomes. We aimed to quantify walking vertical ground reaction force (vGRF) component differences between those with and without CAI. Participants (n = 36) walked barefoot overground at a self-selected comfortable pace. Normalized peak vGRF, time to peak vGRF, and normalized loading rate were calculated. Higher normalized loading rates (CAI: 5.69 ± 0.62 N/BW/s; controls: 5.30 ± 0.44 N/BW/s, p = .034) and less time to peak vGRF (CAI: 1.48 ± 0.18 s; controls: 1.62 ± 0.16 s, p = .018) were observed in those with CAI. In conclusion, those with CAI demonstrate a higher normalized loading rate and less time to peak vGRF compared to controls.

Wikstrom is an assistant professor and the Katherine Smith Gunter Fellow in the Department of Exercise and Sport Science, and is with the MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC. Song and Migel are doctoral students with the Human Movement Science curriculum and the Department of Exercise and Sport Science, and are with the MOTION Science Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC. Hass is a professor with the Department of Applied Physiology and Kinesiology and the associate provost for Academic and Faculty Affairs, University of Florida, Gainesville, FL.

Wikstrom (wikstrom@unc.edu) is corresponding author.
  • 1.

    Shah S, Thomas AC, Noone JM, Blanchette CM, Wikstrom EA. Incidence and cost of ankle sprains in the United States Emergency Departments. Sports Health. 2016;8(6):547552. PubMed ID: 27474161 doi:10.1177/1941738116659639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan L, Delahunt E. Recovery from a first-time lateral ankle sprain and the predictors of chronic ankle instability: a prospective cohort analysis. Am J Sports Med. 2016;44(4):9951003. PubMed ID: 26912285 doi:10.1177/0363546516628870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gribble PA, Bleakley CM, Caulfield BM, et al. Evidence review for the 2016 international ankle consortium consensus statement on the prevalence, impact, and long-term consequences of lateral ankle sprains. Br J Sport Med. 2016;50(24):14961505. doi:10.1136/bjsports-2016-096189

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009;467(7):18001806. PubMed ID: 18830791 doi:10.1007/s11999-008-0543-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Saltzman CL, Salamon ML, Blanchard GM, et al. Epidemiology of ankle arthritis: report of a consecutive series of 639 patients from a tertiary orthopaedic center. Iowa Orthop J. 2005;25:4446. PubMed ID: 16089071

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bigouette J, Simon J, Liu K, Docherty CL. Altered vertical ground reaction forces in participants with chronic ankle instability while running. J Athl Train. 2016;51(9):682687. PubMed ID: 27813684 doi:10.4085/1062-6050-51.11.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Caulfield B, Garrett M. Changes in ground reaction force during jump landing in subjects with functional instability of the ankle joint. Clin Biomech (Bristol, Avon). 2004;19(6):617621. doi:10.1016/j.clinbiomech.2004.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Drewes LK, McKeon PO, Kerrigan DC, Hertel J. Dorsiflexion deficit during jogging with chronic ankle instability. J Sci Med Sport. 2009;12(6):685687. PubMed ID: 18835218 doi:10.1016/j.jsams.2008.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ewers BJ, Dvoracek-Driksna D, Orth MW, Haut RC. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res. 2001;19(5):779784. PubMed ID: 11562121 doi:10.1016/S0736-0266(01)00006-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Burgin LV, Edelsten L, Aspden RM. The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading. Med Eng Phys. 2014;36(2):226232. PubMed ID: 24275561 doi:10.1016/j.medengphy.2013.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Issa R, Boeving M, Kinter M, Griffin TM. Effect of biomechanical stress on endogenous antioxidant networks in bovine articular cartilage. J Orthop Res. 2018;36(2):760769. PubMed ID: 28892196

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wikstrom EA, Song K, Pietrosimone BG. Proteoglycan density of the talar articular cartilage is reduced in those with chronic ankle instability. Osteoarthritis Cartilage. 2018;26:S429. doi:10.1016/j.joca.2018.02.830

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Muir H. Proteoglycans of cartilage. J Clin Pathol Suppl (R Coll Pathol). 1978;31:6781. doi:10.1136/jcp.31.Suppl_12.67

  • 14.

    Theologis AA, Haughom B, Liang F, et al. Comparison of T1rho relaxation times between ACL-reconstructed knees and contralateral uninjured knees. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):298307. PubMed ID: 23370983 doi:10.1007/s00167-013-2397-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis. J Athl Train. 2014;49(6):806819. PubMed ID: 25232663 doi:10.4085/1062-6050-49.3.35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pietrosimone B, Blackburn JT, Harkey MS, et al. Greater mechanical loading during walking is associated with less collagen turnover in individuals with anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(2):425432. PubMed ID: 26684662 doi:10.1177/0363546515618380

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pietrosimone B, Loeser RF, Blackburn JT, et al. Biochecmical markes of cartilage metabolism are associated with walking biomechanics 6-months following anterior cruciate ligament reconstruction. J Orthop Res. 2017;35(10):22882297. PubMed ID: 28150869 doi:10.1002/jor.23534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Padua DA, Distefano LJ. Sagittal plane knee biomechanics and vertical ground reaction forces are modified following ACL injury prevention programs: a systematic review. Sports Health. 2009;1(2):165173. PubMed ID: 23015868 doi:10.1177/1941738108330971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Luc-Harkey BA, Franz JR, Blackburn JT, Padua DA, Hackney AC, Pietrosimone B. Real-time biofeedback can increase and decrease vertical ground reaction force, knee extension excursion, and knee extension moment during walking in individuals with anterior cruciate ligament reconstruction. J Biomech. 2018;76:94102. PubMed ID: 29921523 doi:10.1016/j.jbiomech.2018.05.043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Moisan G, Descarreaux M, Cantin V. Effects of chronic ankle instability on kinetics, kinematics and muscle activity during walking and running: a systemtic review. Gait Posture. 2017;52:381399. PubMed ID: 28063387 doi:10.1016/j.gaitpost.2016.11.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Read JR, Kim H, Son J, Mitchell J, Seeley MK, Hopkins JT. Individuals with chronic ankle instability exhibit altered ground reaction force pattens during walking. Med Sci Sports Exerc. 2017;49(5S):2628.

    • Search Google Scholar
    • Export Citation
  • 22.

    Moisan G, Descarreaux M, Cantin V. Differences in vertical ground reaction forces in individuals with chronic ankle instability during walking. Br J Sport Med. 2017;51(1):23. doi:10.1136/bjsports-2016-096871

    • Search Google Scholar
    • Export Citation
  • 23.

    Wikstrom EA, Bishop M, Inamdar AD, Hass CJ. Gait termination control strategies are altered in chronic ankle instability subjects. Med Sci Sports Exerc. 2010;42(1):197205. doi:10.1249/MSS.0b013e3181ad1e2f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gribble PA, Delahunt E, Bleakley CM, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium. J Orthop Sports Phsy Ther. 2013;43(8):585591. doi:10.2519/jospt.2013.0303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hass CJ, Bishop M, Doidge D, Wikstrom EA. Chronic ankle instability alters central organization of movement. Am J Sports Med. 2010;38(4):829834. PubMed ID: 20139327 doi:10.1177/0363546509351562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Blackburn JT, Pietrosimone B, Harkey MS, Luc BA, Pamukoff DN. Inter-limb differences in impulsive loading following anterior cruciate ligament reconstruction in females. J Biomech. 2016;49(13):30173021. PubMed ID: 27498951 doi:10.1016/j.jbiomech.2016.07.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):218. PubMed ID: 21823805 doi:10.1037/a0024338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    De Ridder R, Willems T, Vanrenterghem J, Robinson MA, Palmans T, Roosen P. Multi-segment foot landing kinematics in subjects with chronic ankle instability. Clin Biomech (Bristol, Avon). 2015;30(6):585592. doi:10.1016/j.clinbiomech.2015.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Feger MA, Donovan L, Hart JM, Hertel J. Lower extremity muscle activation in patients with or without chronic ankle instability during walking. J Athl Train. 2015;50(4):350357. PubMed ID: 25562453 doi:10.4085/1062-6050-50.2.06

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nuesch C, Valderrabano V, Huber C, von Tscharner V, Pagenstert G. Gait patterns of asymetric ankle osteoarthritis patients. Clin Biomech. 2012;27:613618. doi:10.1016/j.clinbiomech.2011.12.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Wikstrom EA, Anderson RB, Hubbard-Turner T. Alterations in stair ascent and descent kinetics are present in those with post-traumatic ankle osteoarthritis. Int J Athl Ther Train. 2015;20(6):3743. doi:10.1123/ijatt.2015-0033

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 463 389 45
Full Text Views 205 91 2
PDF Downloads 119 47 0