Outdoor Running Activities Captured Using Wearable Sensors in Adult Competitive Runners

in International Journal of Athletic Therapy and Training
Alexandra F. DeJong MEd, ATC, * , 1 and Jay Hertel PhD, ATC, FACSM, FNATA * , 1
View More View Less
  • 1 University of Virginia
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Treadmill running analyses cannot adequately replicate outdoor running demands, and wearable sensors offer a means to overcome this clinical limitation. The purpose of this report is to describe five individual runners’ biomechanical outcomes during hill and track intervals, stroller running, and 5- and 21-K races using wearable sensors. Step rates and lengths increased while foot contact time decreased during sprints and 5-K race portions. Stroller running increased step rate, length, and pronation. Step length decreased and pronation and foot contact time increased over the 21-K race. Wearable sensors helped identify patterns in natural training environments as a basis for clinical application.

DeJong and Hertel are with the University of Virginia, Charlottesville, VA.

DeJong (afd4au@virginia.edu) is corresponding author.
  • 1.

    U.S. Road Race Participation Numbers Hold Steady for 2017. 2018 U.S. Running Trends Report. https://runningusa.org/RUSA/News/2018/U.S._Road_Race_Participation_Numbers_Hold_Steady_for_2017.aspx. Accessed August 31, 2018.

    • Export Citation
  • 2.

    Kerr ZY, Kroshus E, Grant J, et al. Epidemiology of national collegiate athletic association men’s and women’s cross-country injuries, 2009-2010 through 2013–2014. J Athl Train. 2016;51(1):5764. PubMed ID: 26701643 doi:10.4085/1062-6050-51.1.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hollander K, Baumann A, Zech A, Verhagen E. Prospective monitoring of health problems among recreational runners preparing for a half marathon. BMJ Open Sport Exerc Med. 2018;4(1):e000308. PubMed ID: 29387447 doi:10.1136/bmjsem-2017-000308

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fredericson M, Misra AK. Epidemiology and aetiology of marathon running injuries. Sports Med Auckl NZ. 2007;37(4–5):437439.

  • 5.

    Agresta C, Brown A. Gait retraining for injured and healthy runners using augmented feedback: a systematic literature review. J Orthop Sports Phys Ther. 2015;45(8):576584. PubMed ID: 26158882 doi:10.2519/jospt.2015.5823

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Barton CJ, Bonanno DR, Carr J, et al. Running retraining to treat lower limb injuries: a mixed-methods study of current evidence synthesised with expert opinion. Br J Sports Med. 2016;50(9):513526. PubMed ID: 26884223.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Willy RW. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys Ther Sport. 2018;29:2633. PubMed ID: 29172095 doi:10.1016/j.ptsp.2017.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cimolin V, Galli M. Summary measures for clinical gait analysis: a literature review. Gait Posture. 2014;39(4):10051010. PubMed ID: 24613461 doi:10.1016/j.gaitpost.2014.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schache AG, Blanch PD, Dorn TW, Brown NA, Rosemond D, Pandy MG. Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc. 2011;43(7):12601271. PubMed ID: 21131859 doi:10.1249/MSS.0b013e3182084929

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tessutti V, Ribeiro AP, Trombini-Souza F, Sacco ICN. Attenuation of foot pressure during running on four different surfaces: asphalt, concrete, rubber, and natural grass. J Sports Sci. 2012;30(14):15451550. PubMed ID: 22897427 doi:10.1080/02640414.2012.713975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    McIntosh AS, Beatty KT, Dwan LN, Vickers DR. Gait dynamics on an inclined walkway. J Biomech. 2006;39(13):24912502. PubMed ID: 16169000 doi:10.1016/j.jbiomech.2005.07.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bramah C, Preece SJ, Gill N, Herrington L. Is there a pathological gait associated with common soft tissue running injuries? Am J Sports Med. 2018;46(12):30233031. PubMed ID: 30193080 doi:10.1177/0363546518793657

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Shull PB, Jirattigalachote W, Hunt MA, Cutkosky MR, Delp SL. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture. 2014;40(1):1119. PubMed ID: 24768525 doi:10.1016/j.gaitpost.2014.03.189

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chambers R, Gabbett TJ, Cole MH, Beard A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015;45(7):10651081. PubMed ID: 25834998 doi:10.1007/s40279-015-0332-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sweeting AJ, Cormack SJ, Morgan S, Aughey RJ. When is a sprint a sprint? A review of the analysis of team-sport athlete activity profile. Front Physiol. 2017;8:432. PubMed ID: 28676767 doi:10.3389/fphys.2017.00432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Reenalda J, Maartens E, Homan L, Buurke JHJ. Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics. J Biomech. 2016;49(14):33623367. PubMed ID: 27616268 doi:10.1016/j.jbiomech.2016.08.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Koldenhoven RM, Hertel J. Validation of a wearable sensor for measuring running biomechanics. Digit Biomark. 2018;2:7478. doi:10.1159/000491645

  • 18.

    Brayne L, Barnes A, Heller B, Wheat J. Using a wireless consumer accelerometer to measure tibial acceleration during running: Agreement with a skin-mounted sensor. Sports Eng. 2018;21(4):487491. doi:10.1007/s12283-018-0271-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hollis CR, Koldenhoven RM, Resch JE, Hertel J. Running biomechanics as measured by wearable sensors: effects of speed and surface. Sports Biomech. 2019:111. doi:10.1080/14763141.2019.1579366

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gregory C, Koldenhoven RM, Higgins M, Hertel J. External ankle supports alter running biomechanics: a field-based study using wearable sensors. Physiol Meas. 2019;40(4):044003. PubMed ID: 30943454 doi:10.1088/1361-6579/ab15ad

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tulchin K, Orendurff M, Karol L. The effects of surface slope on multi-segment foot kinematics in healthy adults. Gait Posture. 2010;32(4):446450. PubMed ID: 20719513 doi:10.1016/j.gaitpost.2010.06.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mangubat ALS, Zhang JH, Chan ZY, MacPhail AJ, Au IP, Cheung RT. Biomechanical outcomes due to impact loading in runners while looking sideways. J Appl Biomech. 2018;34(6):483487. doi:10.1123/jab.2017-0381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Girard O, Brocherie F, Tomazin K, Farooq A, Morin JB. Changes in running mechanics over 100-m, 200-m and 400-m treadmill sprints. J Biomech. 2016;49(9):14901497. PubMed ID: 27015963 doi:10.1016/j.jbiomech.2016.03.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Paradisis GP, Bissas A, Cooke CB. Effect of combined uphill-downhill sprint training on kinematics and maximum running speed in experienced sprinters. Int J Sports Sci Coach. 2015;10(5):887897. doi:10.1260/1747-9541.10.5.887

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    O’sullivan R, Kiernan D, Malone A. Run kinematics with and without a jogging stroller. Gait Posture. 2016;43:220224. doi:10.1016/j.gaitpost.2015.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    de Ruiter CJ, Verdijk PWL, Werker W, Zuidema MJ, de Haan A. Stride frequency in relation to oxygen consumption in experienced and novice runners. Eur J Sport Sci. 2014;14(3):251258. PubMed ID: 23581294 doi:10.1080/17461391.2013.783627

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Winter S. Effects of fatigue on kinematics and kinetics during overground running: a systematic review. J Sports Med Phys Fitness. 2017;57(6):887899. PubMed ID: 27074435.

    • Search Google Scholar
    • Export Citation
  • 28.

    Reenalda J, Maartens E, Buurke JH, Gruber AH. Kinematics and shock attenuation during a prolonged run on the athletic track as measured with inertial magnetic measurement units. Gait Posture. 2019;68:155160. PubMed ID: 30481697 doi:10.1016/j.gaitpost.2018.11.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Giovanelli N, Taboga P, Lazzer S. Changes in running mechanics during a 6-hour running race. Int J Sports Physiol Perform. 2017;12(5):642647. PubMed ID: 27768506 doi:10.1123/ijspp.2016-0135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chan-Roper M, Hunter I, Myrer JW, Eggett DL, Seeley MK. Kinematic changes during a marathon for fast and slow runners. J Sports Sci Med. 2012;11(1):7782. PubMed ID: 24137065.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Brent Edwards W, Taylor D, Rudolphi TJ, Gillette JC, Derrick TR. Effects of running speed on a probabilistic stress fracture model. Clin Biomech. 2010;25(4):372377. doi:10.1016/j.clinbiomech.2010.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med. 2001;29(3):304310. PubMed ID: 11394600 doi:10.1177/03635465010290030901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Winkelmann ZK, Anderson D, Games KE, Eberman LE. Risk factors for medial tibial stress syndrome in active individuals: an evidence-based review. J Athl Train Allen Press. 2016;51(12):10491052. doi:10.4085/1062-6050-51.12.13

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Alcantara RS, Wall-Scheffler CM. Stroller running: energetic and kinematic changes across pushing methods. PLoS ONE. 2017;12(7):e0180575. PubMed ID: 28672004 doi:10.1371/journal.pone.0180575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7(1):7795. PubMed ID: 10200378.

  • 36.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 2):S2-161S2-170. doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gabbett TJ, Nassis GP, Oetter E, et al. The athlete monitoring cycle: a practical guide to interpreting and applying training monitoring data. Br J Sports Med. 2017;51(20):14511452. PubMed ID: 28646100 doi:10.1136/bjsports-2016-097298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Davis IS, Futrell E. Gait retraining: altering the fingerprint of gait. Phys Med Rehabil Clin N Am. 2016;27(1):339355. PubMed ID: 26616188 doi:10.1016/j.pmr.2015.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    DeJong AF, Hertel J. Gait-training devices in the treatment of lower extremity injuries in sports medicine: current status and future prospects. Expert Rev Med Devices. 2018;15(12):891909. PubMed ID: 30466335 doi:10.1080/17434440.2018.1551130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 351 351 50
Full Text Views 216 216 7
PDF Downloads 108 108 3