A Comprehensive Nonoperative Rehabilitation Program Including Blood Flow Restriction for a Talus Fracture in a Professional Hockey Player: A Case Report

in International Journal of Athletic Therapy and Training
Stephanie Di Lemme CAT(C) * , 1 , Jon Sanderson CAT(C), ATC, RMT * , 2 , Richard G. Celebrini PhD, PT * , 3 and Geoffrey C. Dover PhD, CAT(C), ATC * , 1
View More View Less
  • 1 Concordia University
  • 2 Canucks Sports & Entertainment
  • 3 University of British Columbia
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

A 22-year-old male professional hockey player sustained a nondisplaced talus fracture. We present a comprehensive nonsurgical rehabilitation that includes blood flow restriction (BFR) training. Pain and function measures improved throughout the rehabilitation. Lower limb circumference did not change postinjury. The patient returned to play in less than 7 weeks, while current talar fracture management protocols indicate surgical fixation and 6 weeks of immobilization. BFR training may be useful in injury rehabilitation, negating muscle atrophy and increasing muscle strength while allowing the patient to exercise at relatively low loads. This is the first case of BFR training implemented in early fracture rehabilitation of an athlete.

Di Lemme is with the Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada. Sanderson is head athletic therapist, Canucks Sports & Entertainment, Vancouver, British Columbia, Canada. Celebrini is an adjunct professor in the Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Dover is an associate professor and graduate program director in the Department of Health, Kinesiology, and Applied Physiology, and with the Perform Centre, Concordia University, Montreal, Quebec, Canada.

Di Lemme (stephaniedilemme@gmail.com) is corresponding author.
  • 1.

    Kay MC, Register-Mihalik JK, Gray AD, Djoko A, Dompier TP, Kerr ZY. The epidemiology of severe injuries sustained by national collegiate athletic association student athletes, 2009–2010 through 2014–2015. J Athl Train. 2017;52(2):117128. PubMed ID: 28118030 doi:10.4085/1062-6050-52.1.01

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McKay CD, Tufts RJ, Shaffer B, Meeuwisse WH. The epidemiology of professional ice hockey injuries: a prospective report of six NHL seasons. Br J Sports Med. 2014;48(1):5762. PubMed ID: 24334505 doi:10.1136/bjsports-2013-092860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Donaldson L, Li B, Cusimano MD. Economic burden of time lost due to injury in NHL hockey players. Inj Prev. 2014;20(5):347349. PubMed ID: 24446078 doi:10.1136/injuryprev-2013-041016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Adelaar RS. The treatment of complex fractures of the talus. Orthop Clin North Am. 1989;20(4):691707. PubMed ID: 2797758

  • 5.

    Melenevsky Y, Mackey RA, Abrahams RB, Thomson NB. Talar fractures and dislocations: A radiologist’s guide to timely diagnosis and classification. Radiographics. 2015;35(3):765779. PubMed ID: 25969933 doi:10.1148/rg.2015140156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Elgafy H, Ebraheim NA, Tile M, Stephen D, Kase J. Fractures of the talus: Experience of two level 1 trauma centers. Foot Ankle Int. 2000;21(12):10231029. PubMed ID: 11139032 doi:10.1177/107110070002101208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fortin PT, Balazsy JE. Talus fractures: evaluation and treatment. J Am Acad Orthop Surg. 2001;9(2):114127. PubMed ID: 11281635 doi:10.5435/00124635-200103000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Higgins TF, Baumgaertner MR. Diagnosis and treatment of fractures of the talus: A comprehensive review of the literature. Foot Ankle Int. 1999;20(9):595605. PubMed ID: 10509689 doi:10.1177/107110079902000911

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Fournier A, Barba N, Steiger V, et al. Total talar fracture - Long-term results of internal fixation of talar fractures. A multicentric study of 114 cases. Orthop Traumatol Surg Res. 2012;98(4):S48S55. doi:10.1016/j.otsr.2012.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Vallier HA. Fractures of the talus: State of the art. J Orthop Trauma. 2015;29(9):385392. PubMed ID: 26299809 doi:10.1097/BOT.0000000000000378

  • 11.

    Young KW, Park YU, Kim JS, Cho HK, Choo HS, Park JH. Misdiagnosis of talar body or neck fractures as ankle sprains in low energy traumas. Clin Orthop Surg. 2016;8(3):303309. PubMed ID: 27583114 doi:10.4055/cios.2016.8.3.303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Yamanaka T, Farley RS, Caputo JL. Occlusion training increases muscular strength in division IA football players. J Strength Cond Res. 2012;26(9):25232529. PubMed ID: 22105051 doi:10.1519/JSC.0b013e31823f2b0e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cook CJ, Kilduff LP, Beaven CM. Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform. 2014;9(1):166172. PubMed ID: 23628627 doi:10.1123/ijspp.2013-0018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: A limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9(2):135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Vechin FC, Libardi CA, Conceicao MS, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance taining on quadriceps muscle mass and strength in the elderly. J Strength Cond Res. 2015;29(4):10711076. PubMed ID: 25264670 doi:10.1519/JSC.0000000000000703

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):20352039. PubMed ID: 11128848 doi:10.1097/00005768-200012000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength Cond J. 2009;31(3):7784. doi:10.1519/SSC.0b013e3181a5a352

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Daut RL, Cleeland CS, Flanery RC. Develpoment of the Wisconsin Brief Pain Questionaire to assess pain in cancer and other diseases. Pain. 1983;17(2):197210. PubMed ID: 6646795 doi:10.1016/0304-3959(83)90143-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): Scale development, measurement properties, and clinical application. Phys Ther. 1999;79(4):371383. PubMed ID: 10201543

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Vandenborne K, Elliott MA, Walter GA, et al. Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve. 1998;21(8):10061012. PubMed ID: 9655118 doi:10.1002/(SICI)1097-4598(199808)21:8%3C1006::AID-MUS4%3E3.0.CO;2-C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stevens JE, Walter GA, Okereke E, et al. Muscle adaptations with immobilization and rehabilitation after ankle fracture. Med Sci Sports Exerc. 2004;36(10):16951701. PubMed ID: 15595289 doi:10.1249/01.MSS.0000142407.25188.05

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Vallier HA, Nork SE, Benirschke SK, Sangeorzan BJ. Surgical treatment of talar body fractures. J Bone Joint Surg Am. 2003;85(9):17161724. PubMed ID: 12954830 doi:10.2106/00004623-200309000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kraemer WJ, Adams K, Cafarelli E, et al. Joint position statement: progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364380. PubMed ID: 11828249 doi:10.1097/00005768-200202000-00027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Loenneke JP, Wilson GJ, Wilson JM. A mechanistic approach to blood flow occlusion. Int J Sports Med. 2010;31(1):14. PubMed ID: 19885776 doi:10.1055/s-0029-1239499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sumide T, Sakuraba K, Sawaki K, Ohmura H, Tamura Y. Effect of resistance exercise training combined with relatively low vascular occlusion. J Sci Med Sport. 2009;12(1):107112. PubMed ID: 18083635 doi:10.1016/j.jsams.2007.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fujita S, Abe T, Drummond MJ, et al. Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol. 2007;103(3):903910. PubMed ID: 17569770 doi:10.1152/japplphysiol.00195.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit-activity in humans. Eur J Appl Physiol. 1992;64(6):552556. doi:10.1007/BF00843767

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88(6):20972106. PubMed ID: 10846023 doi:10.1152/jappl.2000.88.6.2097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Reeves GV, Kraemer RR, Hollander DB, et al. Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol. 2006;101(6):16161622. PubMed ID: 16902061 doi:10.1152/japplphysiol.00440.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kawada S, Ishii N. Skeletal muscle hypertrophy after chronic restriction of venous blood flow in rats. Med Sci Sports Exerc. 2005;37(7):11441150. PubMed ID: 16015131 doi:10.1249/01.mss.0000170097.59514.bb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kubota A, Sakuraba K, Sawaki K, Sumide T, Tamura Y. Prevention of disuse muscular weakness by restriction of blood flow. Med Sci Sports Exerc. 2008;40(3):529534. PubMed ID: 18379217 doi:10.1249/MSS.0b013e31815ddac6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Tennent DJ, Hylden CM, Johnson AE, Burns TC, Wilken JM, Owens JG. Blood flow restriction training after knee arthroscopy: A randomized controlled pilot study. Clin J Sport Med. 2017;27(3):245252. PubMed ID: 27749358 doi:10.1097/JSM.0000000000000377

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kruithof EE, Thomas SA, Tripp P. Blood flow restriction therapy following microfracture surgery for osteochondritis dissecans in a collegiate athlete. Int J Athl Ther Train. 2018;23(6):230233. doi:10.1123/ijatt.2017-0018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sports Med. 2009;39(9):779795. PubMed ID: 19691366 doi:10.2165/11317780-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute: chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50(8):471475. PubMed ID: 26701923 doi:10.1136/bjsports-2015-095445

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hewitt JD, Harrelson JM, Dailiana Z, Guilak F, Fink C. The effect of intermittent pneumatic compression on fracture healing. J Orthop Trauma. 2005;19(6):371376. PubMed ID: 16003194 doi:10.1097/01.bot.0000161239.81128.05

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Park SH, Silva M. Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model. J Bone Joint Surg Am. 2003;85(8):14461453. PubMed ID: 12925623 doi:10.2106/00004623-200308000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Karabulut M, Bemben DA, Sherk VD, Anderson MA, Abe T, Bemben MG. Effects of high-intensity resistance training and low-intensity resistance training with vascular restriction on bone markers in older men. Eur J Appl Physiol. 2011;111(8):16591667. PubMed ID: 21207053 doi:10.1007/s00421-010-1796-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Bittar ST, Pfeiffer PS, Santos HH, Cirilo-Sousa MS. Effects of blood flow restriction exercises on bone metabolism: A systematic review. Clin Physiol Funct Imaging. 2018;38(6):930935. doi:10.1111/cpf.12512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Clark BC, Manini TM, Hoffman RL, et al. Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults. Scand J Med Sci Sports. 2011;21(5):653662. PubMed ID: 21917016 doi:10.1111/j.1600-0838.2010.01100.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise position stand: Considerations of methodology, application, and safety. Front Physiol. 2019;10:15.

    • Search Google Scholar
    • Export Citation
  • 42.

    Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol. 2000;88(1):6165. PubMed ID: 10642363 doi:10.1152/jappl.2000.88.1.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Spranger MD, Krishnan AC, Levy PD, O’Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: A call for concern. Am J Physiol Heart Circ Physiol. 2015;309(9):H1440H1452. PubMed ID: 26342064 doi:10.1152/ajpheart.00208.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 160 160 28
Full Text Views 154 154 12
PDF Downloads 80 80 2