Do Lower-Limb Kinematic and Kinetic Asymmetries Transfer Across Sprint Running and Countermovement Jumps in University Rugby Union Players?

in International Journal of Athletic Therapy and Training
View More View Less
  • 1 Coventry University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

The aim of this study was to examine if lower-limb kinetic and kinematic asymmetries are transferred between sprint running and countermovement jumps in a group of university Rugby Union players. Eight university Rugby Union players (20.3 ± 1.6 years) participated in the study. Three-dimensional kinematic and force platform data recorded sprint runs and countermovement jumps. Across the two movements there was a substantial and moderate level of agreement for the ankle range of motion and peak normalized ground reaction force, respectively. No significant differences were observed between interlimb kinematic and kinetic variables at the group level. Lower-limb asymmetries may be transferred across dynamic movements and are present at the individual level.

Vizard and Peden are graduate students in Sports Therapy from the School of Life Sciences, Coventry University, Coventry, United Kingdom. Wdowski is a lecturer in Sport and Exercise Biomechanics in the School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom.

Wdowski (ac60721@coventry.ac.uk) is corresponding author.
  • 1.

    McLaren SJ, Weston M, Smith A, et al. Variability of physical performance and player match loads in professional rugby union. J Sci Med Sport. 2016;19:493497. PubMed ID: 26118848 doi:10.1016/j.jsams.2015.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cahill N, Lamb K, Worsfold P, et al. The movement characteristics of English Premiership rugby union players. J Sports Sci. 2013;31:229237. PubMed ID: 23009129 doi:10.1080/02640414.2012.727456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rugby E. Under 16s pathway strategic review. 2015. https://www.englandrugby.com/my-rugby/players/age-grade-rugby/implementing-action-plan/. Accessed March 2019.

    • Export Citation
  • 4.

    Read D, Weaving D, Phibbs P, et al. Movement and physical demands of school and university rugby union match-play in England. BMJ Open Sport Exerc Med. 2017;2:e000147. PubMed ID: 28879027 doi:10.1136/bmjsem-2016-000147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Palmer-Green DS, Stokes KA, Fuller CW, et al. Match injuries in English youth academy and schools rugby union: an epidemiological study. Am J Sports Med. 2013;41:749755. PubMed ID: 23380159 doi:10.1177/0363546512473818

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Keeley DW, Plummer HA, Oliver GD. Predicting asymmetrical lower extremity strength deficits in college-aged men and women using common horizontal and vertical power field tests: a possible screening mechanism. J Strength Cond Res. 2011;25(6):16321637. PubMed ID: 21358423 doi:10.1519/JSC.0b013e3181ddf690

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marshall B, Franklyn-Miller A, Moran K, et al. Biomechanical symmetry in elite rugby union players during dynamic tasks: an investigation using discrete and continuous data analysis techniques. BMC Sports Sci Med Rehabil. 2015;7:13 . PubMed ID: 27408730 doi:10.1186/s13102-015-0006-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bishop C, Turner A, Read P. Effects of inter-limb asymmetries on physical and sports performance: a systematic review. J Sports Sci. 2018;36(10):11351144. doi:10.1080/02640414.2017.1361894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Challoumas D, Stavrou A, Dimitrakakis G. The volleyball athlete’s shoulder: biomechanical adaptations and injury associations. Sports Biomech. 2017;16(2):220237. PubMed ID: 27659068 doi:10.1080/14763141.2016.1222629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech. 2006;21:3340. doi:10.1016/j.clinbiomech.2005.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wilkerson GB, Pinerola JJ, Caturano RW. Invertor vs. evertor peak torque and power deficiencies associated with lateral ankle ligament injury. J Orthop Sports Phys Ther. 1997;26:7886. PubMed ID: 9243406 doi:10.2519/jospt.1997.26.2.78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cowan DN, Jones BH, Frykman PN, et al. Lower limb morphology and risk of overuse injury among male infantry trainees. Med Sci Sports Exerc. 1996;28:945952. PubMed ID: 8871902 doi:10.1097/00005768-199608000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38:19681978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zifchock RA, Davis I, Higginson J, McCaw S, Royer T. Side-to-side differences in overuse running injury susceptibility: a retrospective study. Hum Mov Sci. 2008;27:888902. PubMed ID: 18639948 doi:10.1016/j.humov.2008.03.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dayakidis MK, Boudolos K. Ground reaction force data in functional ankle instability during two cutting movements. Clin Biomech. 2006;21:405411. doi:10.1016/j.clinbiomech.2005.11.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hamill J, Bates BT, Knutzen KM. Ground reaction force symmetry during walking and running. Res Q Exerc Sport. 1984;55:289293. doi:10.1080/02701367.1984.10609367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Vagenas G, Hoshizaki B. Functional asymmetries and lateral dominance in the lower limbs of distance runners. Int J Sport Biomech. 1991;7:311329. doi:10.1123/ijsb.7.4.311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zifchock RA, Davis I, Hamill J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J Biomech. 2006;39:27922797. PubMed ID: 16289516 doi:10.1016/j.jbiomech.2005.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Laroche DP, Cook SB, MacKala K. Strength asymmetry increases gait asymmetry and variability in older women. Med Sci Sports Exerc. 2012;44:21722181. doi:10.1249/MSS.0b013e31825e1d31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Markovic G, Dizdar D, Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18(3):551555. PubMed ID: 15320660

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Turner TS, Tobin DP, Delahunt E. Peak power in the hexagonal barbell jump squat and its relationship to jump performance and acceleration in elite rugby union players. J Sports Sci. 2015;20(5):12341239.

    • Search Google Scholar
    • Export Citation
  • 23.

    Umberger BR. Mechanical of the vertical jump and two joint muscles: implications for training. Strength Cond J. 1998;20(5):7074. doi:10.1519/1073-6840(1998)020%3C0070:MOTVJA%3E2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Impellizzeri FM, Rampinini E, Maffiuletti N, Marcora SM. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med Sci Sports Exerc. 2007;39:20442050. PubMed ID: 17986914 doi:10.1249/mss.0b013e31814fb55c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    VICON Documentation. Lower body modeling with plug-in gait - Nexus 2.5 documentation. March 12, 2018. https://docs.vicon.com/display/Nexus25/Lower+body+modeling+with+Plug-in+Gait#LowerbodymodelingwithPlug-inGait-MarkerSetLowerMarkersetsforPlug-inGaitlowerbodymodel.

    • Export Citation
  • 26.

    Zifchock RA, Davis I, Higginson J, Royer T. The symmetry angle: a novel, robust method of quantifying asymmetry. Gait Posture. 2008;27:622627. PubMed ID: 17913499 doi:10.1016/j.gaitpost.2007.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Bishop C, Read P, Chavda S, Turner A. Asymmetries of the lower limb: the calculation conundrum in strength training and conditioning. Strength Cond J. 2016;38:2732. doi:10.1519/SSC.0000000000000264

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Bishop C, Lake J, Loturco I, Papadopoulos K, Turner A, Read P. Inter-limb asymmetries: the need for an individual approach to data analysis. J Strength Cond Res. 2018. doi:10.1519/JSC.0000000000002729

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276282. doi:10.11613/BM.2012.031

  • 30.

    Hewit JK, Cronin JB, Hume PA. Asymmetry in multi-directional jumping tasks. Phys Ther Sport. 2012;13(4):238242. PubMed ID: 23068899 doi:10.1016/j.ptsp.2011.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. Control of propulsion and body lift during the first two stances of sprint running: a simulation study. J Sports Sci. 2015;33(19):20162024. PubMed ID: 25798644 doi:10.1080/02640414.2015.1026375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Georgios P, Fotis K, Thomas N, Vassilios P, Iraklis K. Influence of the ankle joint dorsiflexion on the execution of vertical jumps. Paper presented at: ISBS-Conference Proceedings Archive, Salzburg, Austria; 2006;1:448451.

    • Export Citation
  • 33.

    Ancillao A, Tedesco S, Barton J, O’Flynn B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors. 2018;18(8):2564. doi:10.3390/s18082564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Dufek JS, Bates BT, Stergiou N, James CR. Interactive effects between group and single-subject response patterns. Hum Mov Sci. 1995;14(3):301323. doi:10.1016/0167-9457(95)00013-I

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 205 205 129
Full Text Views 132 132 11
PDF Downloads 56 56 2