Test-Retest and Intrarater Reliability of Assessing Tibial Rotation Range of Motion by Two Devices

in International Journal of Athletic Therapy and Training
View More View Less
  • 1 Illinois State University
  • 2 Franklin College
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Rotational motion at the tibia is important for proper lower extremity function, however, normative values vary, and the motion is seldom assessed. Clinicians are increasingly using smartphones for assessing range of motion. The purpose of the study was to assess the reliability of the embedded iPhone 6 compass app and universal goniometer for measuring tibial rotation range of motion. Secondarily, the purpose was to compare readings for the devices. Both devices demonstrated excellent reliability despite systematic bias between the two devices. Assessing tibial rotation with a goniometer results in greater values of motion when compared to using the smartphone compass app. Some of the differences in normative values may be the device or measurement technique utilized. These results show tibial rotation can be reliably assessed with either a smartphone or goniometer, however, the deviations between the two devices may require a scaling factor to be developed for between-instrument comparisons.

Stanek, Parish, and Rainville are with Illinois State University, Normal, IL, USA. Williams is with Franklin College, Franklin, IN, USA.

Stanek (jmstane@ilstu.edu) is corresponding author.
  • 1.

    Shin S, Ro D, Lee O, Oh J, Kim S. Within-day reliability of shoulder range of motion measurement with a smartphone. Man Ther. 2012;17:298304. PubMed ID: 22421186 doi:10.1016/j.math.2012.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Dos Santos R, Derhon V, Brandalize M, Brandalize D, Rossi L. Evaluation of knee range of motion: correlation between measurements using a universal goniometer and a smartphone goniometric application. J Bodyw Mov Ther. 2017;21:699703. PubMed ID: 28750987 doi:10.1016/j.jbmt.2016.11.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Terry M. Medical apps for smartphones. Telemed J E Health. 2010;16:1722. PubMed ID: 20070172 doi:10.1089/tmj.2010.9999

  • 4.

    Milani P, Coccetta C, Rabini A, Sciarra T, Massazza G, Ferriero G. Mobile smartphone applications for body position measurement in rehabilitation: a review of goniometric tools. PM R. 2014;6(11):10381043. PubMed ID: 24844445 doi:10.1016/j.pmrj.2014.05.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    de Winter A, Heemskerk M, Terwee C, Jans M, Deville W, van Schaardenburg D. Inter-observer reproducibility of measurements of range of motion in patients with shoulder pain using a digital inclinometer. BMC Musculoskelet Disord. 2004;5:1825. PubMed ID: 15196309 doi:10.1186/1471-2474-5-18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Powell A, Landman A, Bates D. In search of a few good apps. JAMA. 2014;311:18511852. PubMed ID: 24664278 doi:10.1001/jama.2014.2564

  • 7.

    Ferriero G, Sartorio F, Foti C, Primavera D, Brigatti E, Vercelli S. Reliability of a new application for smartphones (Dr Goniometer) for elbow angle measurement. PM R. 2011;3(12):11531154. PubMed ID: 22192326 doi:10.1016/j.pmrj.2011.05.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ullucci P, Tudini F, Moran M. Reliability of smartphone inclinometry to measure upper cervical range of motion. J Sport Rehabil. 2018;28(1):112.

    • Search Google Scholar
    • Export Citation
  • 9.

    Awatani T, Enoki T, Morikita I. Inter-rater reliability and validity of angle measurements using smartphone applications for weight-bearing ankle dorsiflexion range of motion measurements. Phys Ther Sport. 2018;34:113120. PubMed ID: 30267968 doi:10.1016/j.ptsp.2018.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cox R, Martinez R, Baker R, Warren L. Validity of a smartphone application for measuring ankle plantar flexion. J Sport Rehabil. 2018;27(3):13. doi:10.1123/jsr.2017-0143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Norris E, Wright E, Sim S, Fuller M, Neelly K. The reliability of smartphone and goniometric measurements of hip range of motion. J Rehabil Sci Res. 2016;4(77):84.

    • Search Google Scholar
    • Export Citation
  • 12.

    Charlton P, Mentiplaya B, Pua Y, Clark R. Reliability and concurrent validity of a smartphone bubble inclinometer and motion analysis system for measurement of hip joint range of motion. J Sci Med Sport. 2015;18:262267. PubMed ID: 24831757 doi:10.1016/j.jsams.2014.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cejudo A, Sainz de Baranda P, Ayala F, Santonja F. A simplified version of the weight-bearing ankle lunge test: description and test-retest reliability. Man Ther. 2014;19(4):355359. PubMed ID: 24746162 doi:10.1016/j.math.2014.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kobler M, Fuller C, Marshal J, Wright A, Hanney W. The reliability and concurrent validity of scapular plane shoulder elevation measurements using a digital inclinometer and goniometer. Physiother Theory Pract. 2012;28(2):161168. doi:10.3109/09593985.2011.574203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Roach S, Juan J, Suprak D, Lyda M. Concurrent validity of digital inclinometer and universal goniometer in assessing passive hip mobility in healthy subjects. Int J Sports Phys Ther. 2013;8(5):680688. PubMed ID: 24175147

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Krause D, Hollman J, Krych A, Kalisvaart M, Levy B. Reliability of hip internal rotation range of motion measurement using a digital inclinometer. Knee Surg Sports Traumatol Arthrosc. 2015;23(9):25622567. PubMed ID: 24912575 doi:10.1007/s00167-014-3096-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Yaikwawongs N, Limpaphayom N, Wilairatana V. Reliability of digital compass goniometer in knee joint range of motion measurement. J Med Assoc Thai. 2009;92(4):517522. PubMed ID: 19374303

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Laudner K, Stanek J, Meister K. Assessing posterior shoulder contracture: the reliability and validity of measuring glenohumeral joint horizontal adduction. J Athl Train. 2006;41(4):375380. PubMed ID: 17273461

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Palmer M, Epler M. Fundamentals of musculoskeletal assessment techniques. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1998.

    • Search Google Scholar
    • Export Citation
  • 20.

    Norkin C, White D. Measurement of joint motion: A guide to goniometry. 4th ed. Philadelphia, PA: FA Davis; 2009.

  • 21.

    Lusin G, Gajdosik R. Reliability of instrumentation and measurement procedures for active internal and external tibial rotation. J Orthop Sports Phys Ther. 1983;4:154157. PubMed ID: 18806446 doi:10.2519/jospt.1983.4.3.154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Makowski A, Birmingham T, Kramer J, Jogi P, Forwell L, Obright K. Test-retest and interrater reliability of goniometric tibial rotation range of motion measurements. Physiother Can. 2005;57(4):265273. doi:10.3138/ptc.57.4.265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bell-Jenje T, Oliver B, Wood W, Rogers S, Green A, McKinon W. The association between loss of ankle dorsiflexion range of motion, and hip adduction and internal rotation during a step down test. Man Ther. 2015;21:256261. PubMed ID: 26432547 doi:10.1016/j.math.2015.09.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bonci C. Assessment and evaluation of predisposing factors to anterior cruciate ligament injury. J Athl Train. 1999;34:155164. PubMed ID: 16558559

  • 25.

    Griffin L, Agel J, Albolm M, Arendt E, Dick R, Garrett W. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141150. PubMed ID: 10874221 doi:10.5435/00124635-200005000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Matsumoto H, Seedhom B, Suda Y, Otani T, Fujikawa K. Axis location of tibial rotation and its change with flexion angle. Clin Orthop Relat Res. 2000;371:178182. doi:10.1097/00003086-200002000-00022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Zhang L, Dobson S, Shiavi R, Peterson S, Limbird T. Changes in knee kinematics caused by ACL deficiency during fast walking. Gait Posture. 1993;7:144156.

    • Search Google Scholar
    • Export Citation
  • 28.

    Ness M, Long J, Marks R, Harris G. Foot and ankle kinematics in patients with posterior tibial tendon dysfunction. Gait Posture. 2008;27:331339. PubMed ID: 17583511 doi:10.1016/j.gaitpost.2007.04.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Milner C, Ferber R, Pollard C, Hamill J, Davis I. Biomechanical factors associated with tibial stress fracture in female runners. J Med Sci Sports Exerc. 2006;38:323328. doi:10.1249/01.mss.0000183477.75808.92

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Chang A, Hayes K, Dulop D, Song J, Hurwitz D, Cahue S. Hip abduction moment and protection against medial tibiofemoral osteoarthritis progression. Semin Arthritis Rheum. 2005;52:33153318. doi:10.1002/art.21274

    • Search Google Scholar
    • Export Citation
  • 31.

    Powers C. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40:4251. PubMed ID: 20118526 doi:10.2519/jospt.2010.3337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Molgaard C, Rathleff M, Simonsen O. Patellofemoral pain syndrome and its association with hip, ankle, and foot function in 16- to 18-year-old high school students: a single-blind case-control study. J Am Podiatr Med Assoc. 2011;101:215222. PubMed ID: 21622633 doi:10.7547/1010215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ferber R, Noehren B, Hamill J, Davis I. Competitive female runners with a history of iliotibial band syndrome demonstrate atypical hip and knee kinematics. J Orthop Sports Phys Ther. 2010;40:5258. PubMed ID: 20118523 doi:10.2519/jospt.2010.3028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Shultz S, Houglum P, Perrin D. Examination of musculoskeletal injuries. 4th ed. Champaign, IL: Human Kinetics; 2016.

  • 35.

    Magee DJ. Orthopedic physical assessment. 5th ed. St. Louis, MO: Saunders; 2008.

  • 36.

    Clarkson H, Gilewich G. Musculoskeletal assessment: Joint range of motion and manual muscle strength. Baltimore, MD: Williams & Wilkins; 1989.

    • Search Google Scholar
    • Export Citation
  • 37.

    Brant R. Power/sample size calculator. https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html. Accessed January 20, 2019.

    • Export Citation
  • 38.

    American College of Sports Medicine. ACSM guidelines for exercise testing and prescription. 10th ed. Riverwoods, IL: Lippincott Williams & Wilkins; 2017.

    • Search Google Scholar
    • Export Citation
  • 39.

    Shrout P, Fleiss J. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420428. PubMed ID: 18839484 doi:10.1037/0033-2909.86.2.420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.

  • 41.

    Sedgwick P. Limits of agreement (bland-altman method). BMJ. 2013;15:346347.

  • 42.

    Hall E, Docherty C. Validity of clinical outcome measures to evaluate ankle range of motion during the weight-bearing lunge test. J Sci Med Sport. 2017;20(7):618621. PubMed ID: 28108266 doi:10.1016/j.jsams.2016.11.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Placzek J, Boyce D. Orthopedic physical therapy secrets. 2nd ed. St. Louis, MO: Mosby Elsevier; 2006.

All Time Past Year Past 30 Days
Abstract Views 194 194 126
Full Text Views 42 42 2
PDF Downloads 17 17 1