Effect of Cognitive Loading on Single-Leg Jump Landing Biomechanics of Elite Male Volleyball Players

in International Journal of Athletic Therapy and Training
View More View Less
  • 1 Kharazmi University
  • 2 University of Tennessee, Chattanooga
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Anterior cruciate ligament (ACL) injury is prevalent during the single-leg jump landing in various sports. The effects of cognitive loading and how it affects risk of ACL injury are not well understood. The purpose of this study is to examine how landing kinetics change in the presence of cognitive loading during a volleyball block. Cognitive loading decreased activations in vastus lateralis and rectus femoris, and increased activation in biceps femoris and medial gastrocnemius muscles. During landing, the first and second peaks of ground reaction forces were 13% and 11% lower under cognitive loading, suggesting that cognitive loading alters landing biomechanics and muscle activations.

Mohammad Amoli, Aghaie Ataabadi, and Letafatkar are with the Department of Physical Education and Sports Sciences, Kharazmi University, Tehran, Iran. Wilkerson is with the Department of Health and Human Performance, University of Tennessee, Chattanooga, TN, USA. Mansouri is with the Center for Urban Informatics & Progress, University of Tennessee, Chattanooga, TN, USA.

Mansouri (misagh-mansouri@utc.edu) is corresponding author.
  • 1.

    Krosshaug T, Steffen K, Kristianslund E, et al. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44(4):874883. PubMed ID: 26867936 doi:10.1177/0363546515625048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418 doi:10.3928/0147-7447-20000601-15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):15121532. PubMed ID: 16905673 doi:10.1177/0363546506286866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141150. PubMed ID: 10874221 doi:10.5435/00124635-200005000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am J Sports Med. 1995;23(6):694701. PubMed ID: 8600737 doi:10.1177/036354659502300611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ferretti A, Papandrea P, Conteduca F, Mariani PP. Knee ligament injuries in volleyball players. Am J Sports Med. 1992;20(2):203207. PubMed ID: 1558250 doi:10.1177/036354659202000219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Olsen O-E, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):10021012. PubMed ID: 15150050 doi:10.1177/0363546503261724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mihata LC, Beutler AI, Boden BP. Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med. 2006;34(6):899904. PubMed ID: 16567461 doi:10.1177/0363546505285582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Walsh M, Boling MC, McGrath M, Blackburn JT, Padua DA. Lower extremity muscle activation and knee flexion during a jump-landing task. J Athl Train. 2012;47(4):406413. PubMed ID: 22889656 doi:10.4085/1062-6050-47.4.17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O’Connor KM. The effects of single-leg landing technique on ACL loading. J Biomech. 2011;44(10):18451851. PubMed ID: 21561623 doi:10.1016/j.jbiomech.2011.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Almonroeder TG, Kernozek T, Cobb S, Slavens B, Wang J, Huddleston W. Divided attention during cutting influences lower extremity mechanics in female athletes. Sports Biomech. 2017:113.

    • Search Google Scholar
    • Export Citation
  • 13.

    Almonroeder TG, Kernozek T, Cobb S, Slavens B, Wang J, Huddleston W. Cognitive demands influence lower extremity mechanics during a drop vertical jump task in female athletes. J Orthop Sports Phys Ther. 2018;48(5):381387. PubMed ID: 29320946 doi:10.2519/jospt.2018.7739

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hughes G, Watkins J, Owen N. The effects of opposition and gender on knee kinematics and ground reaction force during landing from volleyball block jumps. Res Q Exerc Sport. 2010;81(4):384391. PubMed ID: 21268461 doi:10.1080/02701367.2010.10599698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wojtys EM, Huston LJ. Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med. 1994;22(1):89104. PubMed ID: 8129117 doi:10.1177/036354659402200116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Solomonow M, Baratta R, Zhou B, et al. The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med. 1987;15(3):207213. PubMed ID: 3618871 doi:10.1177/036354658701500302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Morgan KD, Donnelly CJ, Reinbolt JA. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk. J Biomech. 2014;47(13):32953302. PubMed ID: 25218505 doi:10.1016/j.jbiomech.2014.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hewett TE, Ford KR, Myer GD. Anterior cruciate ligament injuries in female athletes: part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am J Sports Med. 2006;34(3):490498. PubMed ID: 16382007 doi:10.1177/0363546505282619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Yu B, Lin C-F, Garrett WE. Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech. 2006;21(3):297305. doi:10.1016/j.clinbiomech.2005.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med. 2007;35(2):235241. PubMed ID: 17092926 doi:10.1177/0363546506294077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech. 2001;16(5):438445. doi:10.1016/S0268-0033(01)00019-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Joseph AM, Collins CL, Henke NM, Yard EE, Fields SK, Comstock RD. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J Athl Train. 2013;48(6):810817. PubMed ID: 24143905 doi:10.4085/1062-6050-48.6.03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252259. PubMed ID: 19182110 doi:10.1177/0363546508328107

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 2005;39(6):324329. PubMed ID: 15911600 doi:10.1136/bjsm.2005.018341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hermens HJ, Freriks B, Merletti R, et al. European Recommendations for Surface Electromyography. Vol 8, 2nd ed. Enschede, Netherlands: Roessingh Research and Development; 1999:1354.

    • Search Google Scholar
    • Export Citation
  • 26.

    Lawrence RK III, Kernozek TW, Miller EJ, Torry MR, Reuteman P. Influences of hip external rotation strength on knee mechanics during single-leg drop landings in females. Clin Biomech. 2008;23(6):806813. doi:10.1016/j.clinbiomech.2008.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. 1997. PubMed ID: 11018445 doi:10.1016/s1050-6411(00)00027-4

    • Search Google Scholar
    • Export Citation
  • 28.

    Blackburn JT, Pietrosimone B, Harkey MS, Luc BA, Pamukoff DN. Quadriceps function and gait kinetics after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48(9):16641670. PubMed ID: 27128669 doi:10.1249/MSS.0000000000000963

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train. 2004;39(1):24. PubMed ID: 15085208

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nagano Y, Ida H, Akai M, Fukubayashi T. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study. Sports Med Arthrosc Rehabil Ther Technol. 2011;3(1):14. PubMed ID: 21752300 doi:10.1186/1758-2555-3-14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Contreras B, Vigotsky AD, Schoenfeld BJ, Beardsley C, Cronin J. A comparison of two gluteus maximus EMG maximum voluntary isometric contraction positions. PeerJ. 2015;3:e1261. PubMed ID: 26417543 doi:10.7717/peerj.1261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Weide G, Huijing PA, Maas JC, Becher JG, Harlaar J, Jaspers RT. Medial gastrocnemius muscle growth during adolescence is mediated by increased fascicle diameter rather than by longitudinal fascicle growth. J Anat. 2015;226(6):530541. PubMed ID: 25879671 doi:10.1111/joa.12306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Perotto A, Delagi E, Iazzetti J, Morrison D. Anatomical Guide for the Electromyographer: The Limbs and Trunk. Springfield, IL: Charles C. Thomas; 1994.

    • Search Google Scholar
    • Export Citation
  • 34.

    Farrokhyar F, Reddy D, Poolman RW, Bhandari M. Why perform a priori sample size calculation? Can J Surg. 2013;56(3):207213. PubMed ID: 23706850 doi:10.1503/cjs.018012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hrysomallis C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007;37(6):547556. PubMed ID: 17503879 doi:10.2165/00007256-200737060-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Dufek JS, Bates BT. Biomechanical factors associated with injury during landing in jump sports. Sports Med. 1991;12(5):326337. PubMed ID: 1763250 doi:10.2165/00007256-199112050-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Yeow C, Lee PV, Goh JC. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing. Knee. 2009;16(5):381386. PubMed ID: 19250828 doi:10.1016/j.knee.2009.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Johnson K. Tears of cruciate ligaments of the knee: US Armed Forces: 1990–2002. Med Surveill Mon Rep. 2003;9:26.

  • 39.

    Frobell R, Roos H, Roos E, et al. The acutely ACL injured knee assessed by MRI: are large volume traumatic bone marrow lesions a sign of severe compression injury? Osteoarthritis Cartilage. 2008;16(7):829836. PubMed ID: 18206394 doi:10.1016/j.joca.2007.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108115. PubMed ID: 1548984 doi:10.1249/00005768-199201000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech. 2008;23(1):8192. doi:10.1016/j.clinbiomech.2007.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    McLean SG, Borotikar B, Lucey SM. Lower limb muscle pre-motor time measures during a choice reaction task associate with knee abduction loads during dynamic single leg landings. Clin Biomech. 2010;25(6):563569. doi:10.1016/j.clinbiomech.2010.02.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Mok KM, Bahr R, Krosshaug T. The effect of overhead target on the lower limb biomechanics during a vertical drop jump test in elite female athletes. Scand J Med Sci Sports. 2017;27(2):161166. PubMed ID: 26688032 doi:10.1111/sms.12640

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Liederbach M, Dilgen FE, Rose DJ. Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers: a 5-year prospective study. Am J Sports Med. 2008;36(9):17791788. PubMed ID: 18753681 doi:10.1177/0363546508323644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Makaruk H, Porter JM. Focus of attention for strength and conditioning training. Strength Cond J. 2014;36(1):1622. doi:10.1519/SSC.0000000000000008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Mejane J, Faubert J, Romeas T, Labbe DR. The combined impact of a perceptual–cognitive task and neuromuscular fatigue on knee biomechanics during landing. Knee. 2019;26(1):5260. PubMed ID: 30583887 doi:10.1016/j.knee.2018.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Onate JA, Guskiewicz KM, Sullivan RJ. Augmented feedback reduces jump landing forces. J Orthop Sports Phys Ther. 2001;31(9):511517. PubMed ID: 11570735 doi:10.2519/jospt.2001.31.9.511

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Kvist J. Rehabilitation following anterior cruciate ligament injury. Sports Med. 2004;34(4):269280. PubMed ID: 15049718 doi:10.2165/00007256-200434040-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Myer GD, Ford KR, Hewett TE. The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol. 2005;15(2):181189. PubMed ID: 15664147 doi:10.1016/j.jelekin.2004.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Beneka A, Malliou P, Tsigganos G, et al. A prospective study of injury incidence among elite and local division volleyball players in Greece. J Back Musculoskelet Rehabil. 2007;20(2–3):115121. doi:10.3233/BMR-2007-202-309

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 21 21 21
Full Text Views 18 18 18
PDF Downloads 8 8 8