Relationship Between Gastrocnemius Muscle Length and Overhead Squat Movement Compensations Among Active-Duty Firefighters

Click name to view affiliation

Thomas J. Sherriff University of Massachusetts Lowell

Search for other papers by Thomas J. Sherriff in
Current site
Google Scholar
PubMed
Close
*
,
Kyle T. Ebersole University of Wisconsin-Milwaukee

Search for other papers by Kyle T. Ebersole in
Current site
Google Scholar
PubMed
Close
*
, and
David J. Cornell University of Massachusetts Lowell

Search for other papers by David J. Cornell in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Restricted gastrocnemius length may impair movement efficiency during functional movements. However, this is yet to be examined among tactical athletes. This study examined the relationship between gastrocnemius muscle length and movement compensations during a two-leg overhead squat among career firefighters. Bilateral ankle dorsiflexion passive range of motion data were collected from 50 firefighters, and movement compensations observed during a two-leg overhead squat were recorded. Firefighters with reduced average ankle dorsiflexion passive range of motion were more likely to demonstrate movement compensations during the overhead squat. Clinicians should utilize interventions that lengthen gastrocnemius musculature to improve the squat movement efficiency of firefighters.

Sherriff and Cornell are with the Health Assessment Laboratory, University of Massachusetts Lowell, Lowell, MA, USA. Sherriff is also with the Department of Physical Therapy & Kinesiology, University of Massachusetts Lowell, Lowell, MA, USA. Ebersole is with the Human Performance & Sport Physiology Laboratory, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; and the Department of Occupational Sciences and Technology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. Cornell is also with the Department of Physical Therapy & Kinesiology, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA; and UMass Movement Research Center, University of Massachusetts Lowell, Lowell, MA, USA.

Cornell (david_cornell@uml.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Seabury SA, McLaren CF. The Frequency, Severity, and Economic Consequences of Musculoskeletal Injuries to Firefighters in California. Santa Monica, CA: RAND Center for Health and Safety in the Workplace; 2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Leffer M, Grizzell T. Implementation of a physician-organized wellness regime (POWR) enforcing the 2007 NFPA standard 1582: injury rate reduction and associated cost savings. J Occup Environ Med. 2010;52(3):336339. PubMed ID: 20190648 doi:10.1097/JOM.0b013e3181d44d8d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Campbell R, Evarts B, Molis JL. United States Firefighter Injuries—2018. Quincy, MA: National Fire Protection Association; 2019.

  • 4.

    Chimera NJ, Warren M. Use of clinical movement screening tests to predict injury in sport. World J Orthop. 2016;7(4):202217. PubMed ID: 27114928 doi:10.5312/wjo.v7.i4.202

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    McCunn R, Aus der Fünten K, Fullagar HH, McKeown I, Meyer T. Reliability and association with injury of movement screens: a critical review. Sports Med. 2016;46(6):763781. PubMed ID: 26721517 doi:10.1007/s40279-015-0453-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Teyhen D, Bergeron MF, Deuster P, et al. Consortium for health and military performance and American College of Sports Medicine Summit: utility of functional movement assessment in identifying musculoskeletal injury risk. Curr Sports Med Rep. 2014;13(1):5263. PubMed ID: 24412892 doi:10.1249/JSR.0000000000000023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Butler RJ, Contreras M, Burton LC, Plisky PJ, Goode A, Kiesel K. Modifiable risk factors predict injuries in firefighters during training academies. Work. 2013;46(1):1117. PubMed ID: 23324700 doi:10.3233/wor-121545

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Peate WF, Bates G, Lunda K, Francis S, Bellamy K. Core strength: a new model for injury prediction and prevention. J Occup Med Toxicol. 2007;2(1):3. PubMed ID: 17428333 doi:10.1186/1745-6673-2-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Manton C, Garibaldi S, Harrell K. The association of the Functional Movement Screen and physical fitness measures with musculoskeletal injury in firefighter recruits [abstract]. J Orthop Sports Phys Ther. 2016;46(1):A188. doi:10.2519/jospt.2016.46.1.A158

    • Search Google Scholar
    • Export Citation
  • 10.

    Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function—part 1. Int J Sports Phys Ther. 2014;9(3):396409. PubMed ID: 24944860

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use of fundamental movements as an assessment of function—part 2. Int J Sports Phys Ther. 2014;9(4):549563. PubMed ID: 25133083

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cornell DJ, Ebersole KT. Intra-rater test-retest reliability and response stability of the Fusionetics Movement Efficiency Test. Int J Sports Phys Ther. 2018;13(4):618632. PubMed ID: 30140555 doi:10.26603/ijspt20180618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hirth CJ. Clinical movement analysis to identify muscle imbalances and guide exercise. Athl Ther Today. 2007;12(4):1014. doi:10.1123/att.12.4.10

  • 14.

    Cook G. Movement: Functional Movement Systems: Screening, Assessment and Corrective Strategies. Santa Cruz, CA: On Target Publications; 2010.

    • Search Google Scholar
    • Export Citation
  • 15.

    Clark MA, Lucett SC, Sutton BG, eds. NASM Essentials of Corrective Exercise Training. 1st ed. Burlington, MA: Jones & Bartlett; 2013.

  • 16.

    Bell D, Vesci B, Distefano L, Guskiewicz K, Hirth C, Padua D. Muscle activity and flexibility in individuals with medial knee displacement during the overhead squat. Athl Train Sports Health Care. 2012;4(3):117125. doi:10.3928/19425864-20110817-03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Bell DR, Padua DA, Clark MA. Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement. Arch Phys Med Rehabil. 2008;89(7):13231328. PubMed ID: 18586134 doi:10.1016/j.apmr.2007.11.048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299311. PubMed ID: 16423913 doi:10.1177/0363546505284183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639646. PubMed ID: 14669959 doi:10.2519/jospt.2003.33.11.639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Eckard T, Padua D, Mauntel T, et al. Association between double-leg squat and single-leg squat performance and injury incidence among incoming NCAA Division I athletes: a prospective cohort study. Phys Ther Sport. 2018;34:192200. PubMed ID: 30388667 doi:10.1016/j.ptsp.2018.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    National Fire Protection Association. NFPA 1582: Standard on Comprehensive Occupational Medical Program for Fire Departments, 2018 Edition. Quincy, MA: National Fire Protection Association; 2017.

    • Search Google Scholar
    • Export Citation
  • 22.

    Vu V, Walker A, Ball N, Spratford W. Ankle restrictive firefighting boots alter the lumbar biomechanics during landing tasks. Appl Ergon. 2017;65:123129. PubMed ID: 28802431 doi:10.1016/j.apergo.2017.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cornell DJ, Ebersole KT. Influence of gastrocnemius muscle length on overhead squat movement compensations among active-duty firefighters [abstract]. Med Sci Sports Exerc. 2017;49(5):465. doi:10.1249/01.mss.0000518163.53756.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Cornell DJ, Gnacinski SL, Zamzow A, Mims J, Ebersole KT. Influence of body mass index on movement efficiency among firefighter recruits. Work. 2016;54(3):679687. PubMed ID: 27286070 doi:10.3233/WOR-162306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Berrymann Reese N, Bandy WD. Muscle length testing of the lower extremity. In: Berrymann Reese N, Bandy WD, eds. Joint Range of Motion and Muscle Length Testing. 3rd ed. St. Louis, MO: Elsevier; 2017:419446.

    • Search Google Scholar
    • Export Citation
  • 26.

    Noda T, Verscheure S. Individual goniometric measurements correlated with observations of the deep overhead squat. Athl Train Sports Health Care. 2009;1(3):114119. doi:10.3928/19425864-20090427-06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Drewes LK, McKeon PO, Kerrigan DC, Hertel J. Dorsiflexion deficit during jogging with chronic ankle instability. J Sci Med Sport. 2009;12(6):685687. PubMed ID: 18835218 doi:10.1016/j.jsams.2008.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hoch MC, Staton GS, McKeon PO. Dorsiflexion range of motion significantly influences dynamic balance. J Sci Med Sport. 2011;14(1):9092. PubMed ID: 20843744 doi:10.1016/j.jsams.2010.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Teyhen DS, Shaffer SW, Lorenson CL, et al. Clinical measures associated with dynamic balance and functional movement. J Strength Cond Res. 2014;28(5):12721283. PubMed ID: 24755867 doi:10.1519/JSC.0000000000000272

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Brown MN, Char R, Henry SO, Tanigawa J, Yasui S. The effect of firefighter personal protective equipment on static and dynamic balance. Ergonomics. 2019;62(9):11931201. PubMed ID: 31204598 doi:10.1080/00140139.2019.1623422

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Games KE, Csiernik AJ, Winkelmann ZK, True JR, Eberman LE. Personal protective ensembles’ effect on dynamic balance in firefighters. Work. 2019;62(3):507514. PubMed ID: 30909266 doi:10.3233/WOR-192885

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Punaxallio A, Lusa S, Luukkonen R. Protective equipment affects balance abilities differently in younger and older firefighters. Aviat Space Environ Med. 2003;74(11):11511156. PubMed ID: 14620471

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Padua DA, Bell DR, Clark MA. Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J Athl Train. 2012;47(5):525536. PubMed ID: 23068590 doi:10.4085/1062-6050-47.5.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sitzler B. Caring for those who care for others. NATA News. 2019;31(3):1215.

  • 35.

    Ries E. Protecting the protectors. APTA in Motion. May 1, 2017:1725.

All Time Past Year Past 30 Days
Abstract Views 1693 595 18
Full Text Views 185 11 0
PDF Downloads 183 4 0