We are updating our website on Thursday, December 2 from 9 AM – 5 PM EST. During this time, users may experience some disruptions while using the site. We apologize for the inconvenience.

The Comparison Between Instrumented and Observer-Rated Measures of the Modified Balance Error Scoring System: A Critically Appraised Topic

in International Journal of Athletic Therapy and Training
View More View Less
  • 1 Sports Medicine Research Institute, University of Kentucky
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Clinical Scenario: Postural control deficits are one of the most common impairments associated with sport-related concussion. The Modified Balance Error Scoring System (mBESS) is one of the current standard clinical measures for assessing these deficits; however, it is dependent upon observer-rated measurements. Advancements in inertial measurement units (IMUs) lend themselves to be a viable option in objectifying postural control assessments, such as the mBESS. Clinical Question: Are IMU-based measures of the mBESS more effective than observer-rated measures of the mBESS in identifying patients with sport-related concussion? Summary of Key Findings: Following a systematic search, three studies were included. One study compared observer-rated measures of the Balance Error Scoring System and mBESS to instrumented measures of both tests and determined that the instrumented mBESS had the highest diagnostic accuracy. The results of the second study determined that IMU-based measures were successful in both classifying group and identifying task errors. The final study found that using IMUs increased sensitivity of the mBESS, specifically the double-limb stance, to group classification. Clinical Bottom Line: Instrumentation of the mBESS using IMUs provides more objective and sensitive measures of postural control in patients with SRC. Strength of Recommendation: Due to the consistent, good-quality evidence used to answer this critically appraised topic, the grade of A is recommended by the Strength of Recommendation Taxonomy.

The authors are with the Department of Athletic Training and Clinical Nutrition, College of Health Sciences, Sports Medicine Research Institute, University of Kentucky, Lexington, KY, USA.

Hoch (matt.hoch@uky.edu) is corresponding author.
  • 1.

    Littleton A, Guskiewicz K. Current concepts in sport concussion management: a multifaceted approach. J Sport Health Sci. 2013;2(4):227235. doi:10.1016/j.jshs.2013.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Kelly KC, Jordan EM, Joyner AB, Burdette GT, Buckley TA. National Collegiate Athletic Association Division I athletic trainers’ concussion—management practice patterns. J Athl Train. 2014;49(5):665673. PubMed ID: 25188315 doi:10.4085/1062-6050-49.3.25

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Echemendia RJ, Meeuwisse W, McCrory P, et al. The sport concussion assessment tool 5th edition (SCAT5): background and rationale. Br J Sports Med. 2017;51(11):895901. PubMed ID: 28446453 doi:10.1136/bjsports-2016-097466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Broglio SP, Zhu W, Sopiarz K, Park Y. Generalizability theory analysis of balance error scoring system reliability in healthy young adults. J Athl Train. 2009;44(5):497502. PubMed ID: 19771288 doi:10.4085/1062-6050-44.5.497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Valovich TC, Perrin DH, Gansneder BM. Repeat administration elicits a practice effect with the Balance Error Scoring System but not with the standardized assessment of concussion in high school athletes. J Athl Train. 2003;38(1):51. PubMed ID: 12937472

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wilkins JC, McLeod TCV, Perrin DH, Gansneder BM. Performance on the balance error scoring system decreases after fatigue. J Athl Train. 2004;39(2):156. PubMed ID: 15173867

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hunt TN, Ferrara MS, Bornstein RA, Baumgartner TA. The reliability of the modified balance error scoring system. Clin J Sport Med. 2009;19(6):471475. PubMed ID: 19898074 doi:10.1097/JSM.0b013e3181c12c7b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Iverson GL, Koehle MS. Normative data for the modified balance error scoring system in adults. Brain Injury. 2013;27(5):596599. PubMed ID: 23473405 doi:10.3109/02699052.2013.772237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Brown HJ. Development and Validation of an Objective Balance Error Scoring System. Medicine & Science in Sports & Exercise. 2013. PubMed ID: 24500539 doi:10.1249/MSS.0000000000000263

    • Search Google Scholar
    • Export Citation
  • 10.

    Weiss A, Herman T, Plotnik M, Brozgol M, Giladi N, Hausdorff J. An instrumented timed up and go: the added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol Meas. 2011;32(12):2003. PubMed ID: 22094550 doi:10.1088/0967-3334/32/12/009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mancini M, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Chiari L. Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(7):557562. PubMed ID: 21641263 doi:10.1016/j.parkreldis.2011.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Camps J, Sama A, Martin M, et al. Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. Knowl Based Syst. 2018;139:119131. doi:10.1016/j.knosys.2017.10.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Spain R, George RS, Salarian A, et al. Body-worn motion sensors detect balance and gait deficits in people with multiple sclerosis who have normal walking speed. Gait Posture. 2012;35(4):573578. PubMed ID: 22277368 doi:10.1016/j.gaitpost.2011.11.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fisher M, Tierney R, Russ A, Mansell J. Current evidence in management of concussion baseline testing in ADHD and learning difficulties patients: a critically appraised topic. Int J Athl Ther Train. 2019;24(5):181185. doi:10.1123/ijatt.2018-0089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Prince J, Schussler E, McCann R. Rehabilitation utilizing controlled aerobic activity in patients with a concussion: a critically appraised topic. J Sport Rehabil. 2020;29(1):122126. PubMed ID: 31094622 doi:10.1123/jsr.2018-0224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ebell MH, Siwek J, Weiss BD, et al. Strength of recommendation taxonomy (SORT): a patient-centered approach to grading evidence in the medical literature. J Am Board Fam Med. 2004;17(1):5967. doi:10.3122/jabfm.17.1.59

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    King LA, Horak FB, Mancini M, et al. Instrumenting the balance error scoring system for use with patients reporting persistent balance problems after mild traumatic brain injury. Arch Phys Med Rehabil. 2014;95(2):353359. PubMed ID: 24200875 doi:10.1016/j.apmr.2013.10.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    King LA, Mancini M, Fino PC, et al. Sensor-based balance measures outperform modified balance error scoring system in identifying acute concussion. Ann Biomed Eng. 2017;45(9):21352145. PubMed ID: 28540448 doi:10.1007/s10439-017-1856-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Doherty C, Zhao L, Ryan J, Komaba Y, Inomata A, Caulfield B. Quantification of postural control deficits in patients with recent concussion: an inertial-sensor based approach. Clin Biomech. 2017;42:7984. doi:10.1016/j.clinbiomech.2017.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838847.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McLeod TCV, Barr WB, McCrea M, Guskiewicz KM. Psychometric and measurement properties of concussion assessment tools in youth sports. J Athl Train. 2006;41(4):399.

    • Search Google Scholar
    • Export Citation
  • 22.

    Cantu RC. Second-impact syndrome. Clin Sports Med. 1998;17(1):3744. PubMed ID: 9475969 doi:10.1016/S0278-5919(05)70059-4

  • 23.

    McCrory P, Davis G, Makdissi M. Second impact syndrome or cerebral swelling after sporting head injury. Curr Sports Med Rep. 2012;11(1):2123. PubMed ID: 22236821 doi:10.1249/JSR.0b013e3182423bfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Zemper ED. Two-year prospective study of relative risk of a second cerebral concussion. Am J Phys Med Rehabil. 2003;82(9):653659. PubMed ID: 12960905 doi:10.1097/01.PHM.0000083666.74494.BA

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lynall RC, Mauntel TC, Padua DA, Mihalik JP. Acute lower extremity injury rates increase after concussion in college athletes. Med Sci Sports Exerc. 2015;47(12):24872492. PubMed ID: 26057941 doi:10.1249/MSS.0000000000000716

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ghislieri M, Gastaldi L, Pastorelli S, Tadano S, Agostini V. Wearable inertial sensors to assess standing balance: a systematic review. Sensors. 2019;19(19):4075. doi:10.3390/s19194075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Howell DR, Lugade V, Potter MN, Walker G, Wilson JC. A multifaceted and clinically viable paradigm to quantify postural control impairments among adolescents with concussion. Physiol Meas. 2019;40(8):084006. PubMed ID: 31342939 doi:10.1088/1361-6579/ab3552

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 192 192 41
Full Text Views 134 134 26
PDF Downloads 173 173 33