Exploring the Relationship Between Musculoskeletal Injury and Clinical Outcome Measures of Cervical Sensorimotor Function

in International Journal of Athletic Therapy and Training
Kelly M. Cheever PhD, ATC*,1, W. Geoffrey Wright PhD*,2, Jane McDevitt PhD, ATC*,2, Michael Sitler EdD, ATC, FNATA*,2, and Ryan T. Tierney PhD, ATC*,2
View More View Less
  • 1 University of Texas at San Antonio
  • | 2 Temple University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

The objective of this study was to explore the correlation between preseason measures of cervical sensorimotor function and musculoskeletal injury rates across a contact sport season. The authors hypothesized that athletes with higher sensorimotor dysfunction at baseline would be more likely to suffer an injury. The authors further hypothesized that contact sport participation would lead to greater changes in cervical sensorimotor function across a sport season compared with noncontact controls. Forty-nine collegiate club athletes (26 rugby and 23 noncontact controls) participated in a cohort study. Low positive correlations between baseline sign and symptom severity (r = .383), and score (r = .344), and cervical joint position error (r = .385–.425) and time loss injury were observed. Combining sign and symptom severity score and the neck reposition error predicted musculoskeletal injury status with 80.8% accuracy (area under the curve = 0.80, p = .003). The results suggest preseason deficits in cervical sensorimotor function may be related to future musculoskeletal injury risk. Sign and symptom severity score, Neck Disability Index score, and cervical joint position error can help identify athletes requiring more comprehensive cervical spine assessment that may benefit from preventative intervention.

Cheever is with the Department of Kinesiology, College for Health, Community and Policy, University of Texas at San Antonio, San Antonio, TX, USA; and Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, TX, USA. Wright, Tierney, and McDevitt are with the Department of Health and Rehabilitation Sciences, College of Public Health, Temple University, Philadelphia, PA, USA; and the Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA. McDevitt, Sitler, and Tierney are with the Department of Kinesiology, College of Public Health, Temple University, Philadelphia, PA, USA. Wright and Tierney are also with the Neuromotor Sciences Program, College of Public Health, Temple University, Philadelphia, PA, USA. Wright is also with the Department of Bioengineering, College of Public Health, Temple University, Philadelphia, PA, USA.

Cheever (kelly.cheever@utsa.edu) is corresponding author.
  • 1.

    Simon JE, Docherty CL. Current health-related quality of life is lower in former division I collegiate athletes than in non-collegiate athletes. Am J Sports Med. 2014;42(2):423429. PubMed ID: 24318608 doi:10.1177/0363546513510393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ellis MJ, Leddy JJ, Willer B. Physiological, vestibulo-ocular and cervicogenic post-concussion disorders: an evidence-based classification system with directions for treatment. Brain Inj. 2015;29(2):238248. PubMed ID: 25314613 doi:10.3109/02699052.2014.965207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Leddy JJ, Baker JG, Merchant A, et al. Brain or strain? Symptoms alone do not distinguish physiologic concussion from cervical/vestibular injury. Clin J Sport Med. 2015;25(3):237242. PubMed ID: 25051194 doi:10.1097/JSM.0000000000000128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lynall RC, Mauntel TC, Padua DA, Mihalik J. Acute lower extremity injury rates increase following concussion in college athletes. Med Sci Sports Exerc.2015;47(12):24872492. PubMed ID: 26057941doi:10.1249/MSS.0000000000000716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Rafferty J, Ranson C, Oatley G, et al. On average, a professional rugby union player is more likely than not to sustain a concussion after 25 matches. Br J Sports Med. 2019;53(15):969973. PubMed ID: 29530941doi:10.1136/bjsports-2017-098417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lynall RC, Mauntel TC, Pohlig RT, et al. Lower extremity musculoskeletal injury risk after concussion recovery in high school athletes. J Athl Train. 2017;52(11):10281034. PubMed ID: 29140128 doi:10.4085/1062-6050-52.11.22

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Herman DC, Jones D, Harrison A, et al. Concussion may increase the risk of subsequent lower extremity musculoskeletal injury in collegiate athletes. Sports Med. 2017;47(5):10031010. PubMed ID: 27544666 doi:10.1007/s40279-016-0607-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nordstrom A, Nordstrom P, Ekstrand J. Sports-related concussion increases the risk of subsequent injury by about 50% in elite male football players. Br J Sports Med. 2014;48(19):14471450. PubMed ID: 25082616 doi:10.1136/bjsports-2013-093406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dubose DF, Herman DC, Jones DL, et al. Lower extremity stiffness changes after concussion in collegiate football players. Med Sci Sports Exerc. 2017;49(1):167172. PubMed ID: 27501359 doi:10.1249/MSS.0000000000001067

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pan T, Liao K, Roenigk K, Daly JJ, Walker MF. Static and dynamic postural stability in veterans with combat-related mild traumatic brain injury. Gait Posture. 2015;42(4):550557. PubMed ID: 26374930 doi:10.1016/j.gaitpost.2015.08.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brooks MA, Peterson K, Biese K, Sanfilippo J, Heiderscheit BC, Bell DR. Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. Am J Sports Med. 2016;44(3):742747. PubMed ID: 26786903 doi:10.1177/0363546515622387

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kawata K, Rubin LH, Lee HL, et al. Association of football subconcussive head impacts with ocular near point of convergence. JAMA Ophthalmol. 2016;134(7):763769. PubMed ID: 27257799 doi:10.1001/jamaophthalmol.2016.1085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hwang S, Ma L, Kawata K, Tierney R, Jeka JJ. Vestibular dysfunction after subconcussive head impact. J Neurotra. 2017;34(1):815. PubMed ID: 26885560 doi:10.1089/neu.2015.4238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kawata K, Nowak M, Bevilacqua Z, et al. Transient perturbation in neuro-ophthalmologic function after repetitive subconcussive head impacts: a randomized controlled trial. J Neurotrauma. 2019;36(13):A103.

    • Search Google Scholar
    • Export Citation
  • 15.

    Panjabi MM, Cholewicki J, Nibu K, Grauer J, Babat LB, Dvorak J. Critical load of the human cervical spine: an in vitro experimental study. Clin Biomech. 1988;13(1):1117. PubMed ID: 11415766 doi:10.1016/S0268-0033(97)00057-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    King D, Hume PA, Brughelli M, Gissane C. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches. Am J Sports Med. 2015;43(3):614624. PubMed ID: 25535096 doi:10.1177/0363546514560876

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Baugh CM, Kiernan PT, Kroshus E, et al. Frequency of head-impact-related outcomes by position in NCAA division I collegiate football players. J Neurotrauma. 2015;32(5):314326. PubMed ID: 25155288 doi:10.1089/neu.2014.3582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sortland O, Tysvaer AT, Storli OV. Changes in the cervical spine in association football players. Br J Sports Med. 1982;16(2):8084. PubMed ID: 7104560 doi:10.1136/bjsm.16.2.80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kartal A, Yıldıran İ, Şenköylü A, Korkusuz F. Soccer causes degenerative changes in the cervical spine. Eur Spine J. 2004;13(1):7682. PubMed ID: 14648304 doi:10.1007/s00586-003-0623-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mehnert MJ, Agesen T, Malanga GA. “Heading” and neck injuries in soccer: a review of biomechanics and potential long-term effects. Pain Physician. 2005;8(4):391397.PubMed ID: 16850063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Berge J, Marque B, Vital JM, Sénégas J, Caillé JM. Age-related changes in the cervical spines of front-line rugby players. Am J Sports Med. 1999;27(4):422429. PubMed ID: 10424210 doi:10.1177/03635465990270040401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Castinel BH, Adam P, Milburn PD, et al. Epidemiology of cervical spine abnormalities in asymptomatic adult professional rugby union players using static and dynamic MRI protocols: 2002 to 2006. Br J Sports Med. 2010;44(3):194199. PubMed ID: 18385195 doi:10.1136/bjsm.2007.045815

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hides JA, Smith MMF, Mendis MD, et al. Self-reported concussion history and sensorimotor tests predict head/neck injuries. Med Sci Sports Exerc. 2017;49(12):23852393. PubMed ID: 28708701 doi:10.1249/MSS.0000000000001372

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cheever K, Kawata K, Tierney RT, Galgon A. Cervical pathology assessments to use during a concussion evaluation: a review. J Athl Train. 2016;51(12):10371044. PubMed ID: 27835042 doi:10.4085/1062-6050-51.12.15

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Boyle R. Vestibulospinal control of reflex and voluntary head movement. Ann New York Acad Sci. 2001;942(1):364380. PubMed ID: 11710478 doi:10.1111/j.1749-6632.2001.tb03760.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    McLain RF. Mechanoreceptor endings in human cervical facet joints. Spine. 1994;19(5):495501. PubMed ID: 8184340 doi:10.1097/00007632-199403000-00001

  • 27.

    Allum JH, Gresty M, Keshner E, Shupert C. The control of head movements during human balance corrections. J Vestib Res. 1997;7(2–3):189219. PubMed ID: 9178224 doi:10.3233/VES-1997-72-309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kulkarni V, Chandy MJ, Babu KS. Quantitative study of muscle spindles in suboccipital muscles of human foetuses. Neurol India. 2001;49(4):355359. PubMed ID: 11799407

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Marshall CM, Vernon H, Leddy JJ, Baldwin BA. The role of the cervical spine in post-concussion syndrome. Phys Sports Med. 2015;43(3):274284. PubMed ID: 26138797 doi:10.1080/00913847.2015.1064301

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Schneider KJ, Meeuwisse WH, Nettel-Aguirre A, et al. Cervicovestibular rehabilitation in sport-related concussion: a randomised controlled trial. Br J Sports Med. 2014;48(17):12941298. PubMed ID: 24855132 doi:10.1136/bjsports-2013-093267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lark SD, McCarthy PW. Cervical range of motion and proprioception in rugby players versus non-rugby players. J Sports Sci. 2007;25(8):887894. PubMed ID: 17474042 doi:10.1080/02640410600944543

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lark SD, McCarthy P. The effects of a rugby playing season on cervical range of motion. J Sports Sci. 2010;28(6):649655. PubMed ID: 20397098 doi:10.1080/02640411003631968

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hides JA, Smith MMF, Mendis MD, et al. A prospective investigation of changes in the sensorimotor system following sports concussion. An exploratory study. Musculoskel Sci Pract. 2017;29:719. PubMed ID: 28259770 doi:10.1016/j.msksp.2017.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Collins CL, Fletcher EN, Fields SK, et al. Neck strength: a protective factor reducing risk for concussion in high school sports. J Prim Prev. 2014;35(5):309319. PubMed ID: 24930131 doi:10.1007/s10935-014-0355-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Buckley TA, Howard C, Oldham J, Lynall RC, Swanik CB, Getchell N. No clinical predictors of postconcussion musculoskeletal injury in college atheltes. Med Sci Sports Exerc. 2020;52(6):12561262. PubMed ID: 31972629 doi:10.1249/MSS.0000000000002269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Caccese JB, Best C, Lamond LC, et al. Effects of repetitive head impacts on a concussion assessment battery. Med Sci Sports Exerc. 2019;51(7):13551361. PubMed ID: 30649104 doi:10.1249/MSS.0000000000001905

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    McLeod TCV. The value of various assessment techniques in detecting the effects of concussion on cognition, symptoms, and postural control. J Athl Train. 2009;44(6):663665. PubMed ID: 19911094 doi:10.4085/1062-6050-44.6.663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Cheever KM, Myrer JW, Johnson AW, Fellingham GW. Understanding the complete pathophysiology of chronic mild to moderate neck pain: implications for the inclusion of a comprehensive sensorimotor evaluation. J Back Musculoskel Rehabil. 2017;30(5):991997. PubMed ID: 28505953 doi:10.3233/BMR-169535

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Versteegh T, Beaudet D, Greenbaum M, Hellyer L, Tritton A, Walton D. Evaluating the reliability of a novel neck-strength assessment protocol for healthy adults using self-generated resistance with a hand-held dynamometer. Physiother Can. 2015;67(1):5864. PubMed ID: 25931654 doi:10.3138/ptc.2013-66

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Mukaka M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):6971. PubMed ID: 23638278

  • 41.

    Hosmer D, Lemeshow S, Sturdivant R. Applied Logistic Regression. Hoboken, NJ: John Wiley & Sons; 2013.

  • 42.

    Armstrong B, McNair P, Taylor D. Head and neck position sense. Sports Med. 2008;38(2):101117. PubMed ID: 18201114 doi:10.2165/00007256-200838020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kato S, Takeshita K, Matsudaira K, Tonosu J, Hara N, Chikuda H. Normative score and cut-off value of the Neck Disability Index. J Orthopaed Sci. 2012;17(6):687693. PubMed ID: 22895822 doi:10.1007/s00776-012-0276-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Lark SD, McCarthy PW. The effects of a single game of rugby on active cervical range of motion. J Sports Sci. 2009;27(5):491497. PubMed ID: 19204848 doi:10.1080/02640410802632136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 136 136 25
Full Text Views 118 118 20
PDF Downloads 153 153 27