Plyometrics Did Not Improve Jump-Landing Biomechanics in Individuals With a History of Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial

Click name to view affiliation

Hyunjae Jeon Biodynamics Research Laboratory, Department of Kinesiology, The University of North Carolina at Charlotte, Charlotte, NC, USA

Search for other papers by Hyunjae Jeon in
Current site
Google Scholar
PubMed
Close
*
,
Sean Krysak Biodynamics Research Laboratory, Department of Kinesiology, The University of North Carolina at Charlotte, Charlotte, NC, USA

Search for other papers by Sean Krysak in
Current site
Google Scholar
PubMed
Close
,
Steven J. Pfeiffer Kinesiology Department, Queens University of Charlotte, Charlotte, NC, USA,

Search for other papers by Steven J. Pfeiffer in
Current site
Google Scholar
PubMed
Close
, and
Abbey C. Thomas Biodynamics Research Laboratory, Department of Kinesiology, The University of North Carolina at Charlotte, Charlotte, NC, USA

Search for other papers by Abbey C. Thomas in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Second anterior cruciate ligament (ACL) injury has similar biomechanical risk factors as primary injury. Standard of care rehabilitation does not adequately mitigate these biomechanical risks. This study examined the effectiveness of a 4-week plyometric intervention on biomechanical risk factors of second ACL injury versus no intervention in patients with a history of ACL reconstruction. Thirty adults post-ACL reconstruction received 12 sessions of plyometric (age: 19.9 ± 1.62 years; body mass index: 23.9 ± 2.6 kg/m2; months postoperative: 35.7 ± 24.2) or no (age: 21.3 ± 3.5 years; body mass index: 27.7 ± 4.8 kg/m2; months postoperative: 45.3 ± 25.4) exercise intervention. Hip and knee biomechanics were quantified during a jump-landing task before and after the intervention. Individual response to the intervention was evaluated via minimal detectable change. Hip flexion angle had the greatest response to plyometric training. Overall, focused plyometric intervention did not adequately mitigate biomechanical risk factors of second ACL injury; thus, development of interventions capable of modifying biomechanics known to contribute to ACL injury risk remains necessary.

Thomas (afenwick@uncc.edu) is corresponding author, https://orcid.org/0000-0001-6096-0319

  • Collapse
  • Expand
  • 1.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):19681978. PubMed ID: 20702858 doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930935. doi:10.1002/jor.1100130618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Etnoyer J, Cortes N, Ringleb SI, Van Lunen BL, Onate JA. Instruction and jump-landing kinematics in college-aged female athletes over time. J Athl Train. 2013;48(2):161171. PubMed ID: 23672380 doi:10.4085/1062-6050-48.2.09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pfile KR, Hart JM, Herman DC, Hertel J, Kerrigan DC, Ingersoll CD. Different exercise training interventions and drop-landing biomechanics in high school female athletes. J Athl Train. 2013;48(4):450462. PubMed ID: 23768121 doi:10.4085/1062-6050-48.4.06

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ericksen HM, Thomas AC, Gribble PA, Armstrong C, Rice M, Pietrosimone B. Jump-landing biomechanics following a 4-week real-time feedback intervention and retention. Clin Biomech. 2016;32:8591. doi:10.1016/j.clinbiomech.2016.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ericksen HM, Thomas AC, Gribble PA, Doebel SC, Pietrosimone BG. Immediate effects of real-time feedback on jump-landing kinematics. J Orthop Sports Phys Ther. 2015;45(2):112118. PubMed ID: 25552287 doi:10.2519/jospt.2015.4997

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Myer GD, Ford KR, Brent JL, Hewett TE. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res. 2006;20(2):345353. PubMed ID: 16686562

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Myer GD, Ford KR, Palumbo JP, Hewett TE. Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res. 2005;19(1):5160. PubMed ID: 15705045

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chappell JD, Limpisvasti O. Effect of a neuromuscular training program on the kinetics and kinematics of jumping tasks. Am J Sports Med. 2008;36(6):10811086. PubMed ID: 18359820 doi:10.1177/0363546508314425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lephart SM, Abt JP, Ferris CM, et al. Neuromuscular and biomechanical characteristic changes in high school athletes: a plyometric versus basic resistance program. Br J Sports Med. 2005;39(12):932938. PubMed ID: 16306502 doi:10.1136/bjsm.2005.019083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pollard CD, Sigward SM, Ota S, Langford K, Powers CM. The influence of in-season injury prevention training on lower-extremity kinematics during landing in female soccer players. Clin J Sport Med. 2006;16(3):223227. PubMed ID: 16778542 doi:10.1097/00042752-200605000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Brown TN, Palmieri-Smith RM, McLean SG. Comparative adaptations of lower limb biomechanics during unilateral and bilateral landings after different neuromuscular-based ACL injury prevention protocols. J Strength Cond Res. 2014;28(10):28592871. PubMed ID: 24714537 doi:10.1519/JSC.0000000000000472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765773. PubMed ID: 8947398 doi:10.1177/036354659602400611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Davies G, Riemann BL, Manske R. Current concepts of plyometric exercise. Int J Sports Phys Ther. 2015;10(6):760786. PubMed ID: 26618058

  • 16.

    Hutton RS, Atwater SW. Acute and chronic adaptations of muscle proprioceptors in response to increased use. Sports Med. 1992;14(6):406421. PubMed ID: 1470793 doi:10.2165/00007256-199214060-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thomas AC, Lepley LK, Wojtys EM, McLean SG, Palmieri-Smith RM. Effects of neuromuscular fatigue on quadriceps strength and activation and knee biomechanics in individuals post-anterior cruciate ligament reconstruction and healthy adults. J Orthop Sports Phys Ther. 2015;45(12):10421050. PubMed ID: 26471851 doi:10.2519/jospt.2015.5785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Higgins LD, Taylor MK, Park D, et al. Reliability and validity of the international knee documentation committee (IKDC) subjective knee form. Joint Bone Spine. 2007;74(6):594599. PubMed ID: 17888709 doi:10.1016/j.jbspin.2007.01.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Crawford K, Briggs KK, Rodkey WG, Steadman JR. Reliability, validity, and responsiveness of the IKDC score for meniscus injuries of the knee. Arthroscopy. 2007;23(8):839844. doi:10.1016/j.arthro.2007.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Irrgang JJ, Anderson AF, Boland AL, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med. 2001;29(5):600613. PubMed ID: 11573919 doi:10.1177/03635465010290051301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985;198:4349.

  • 22.

    Briggs KK, Steadman JR, Hay CJ, Hines SL. Lysholm score and Tegner activity level in individuals with normal knees. Am J Sports Med. 2009;37(5):898901. PubMed ID: 19307332 doi:10.1177/0363546508330149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Padua DA, Boling MC, Distefano LJ, Onate JA, Beutler AI, Marshall SW. Reliability of the landing error scoring system-real time, a clinical assessment tool of jump-landing biomechanics. J Sport Rehabil. 2011;20(2):145156. PubMed ID: 21576707 doi:10.1123/jsr.20.2.145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Boling MC, Padua DA, Marshall SW, Guskiewicz K, Pyne S, Beutler A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: the joint undertaking to monitor and prevent ACL injury (jump-ACL) cohort. Am J Sports Med. 2009;37(11):21082116. PubMed ID: 19797162 doi:10.1177/0363546509337934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE Jr, Beutler AI. The landing error scoring system (less) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the jump-ACL study. Am J Sports Med. 2009;37(10):19962002. PubMed ID: 19726623 doi:10.1177/0363546509343200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Haas R, Maloney S, Pausenberger E, et al. Clinical decision making in exercise prescription for fall prevention. Phys Ther. 2012;92(5):666679. PubMed ID: 22228609 doi:10.2522/ptj.20110130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Soriano-Maldonado A, Romero L, Femia P, Roero C, Ruiz JR, Gutierrez A. A learning protocol improves the validity of the Borg 6-20 RPE scale during indoor cycling. Int J Sports Med. 2014;35(5):379384. PubMed ID: 24165960

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 29.

    Day ML, McGuigan MR, Brice G, Foster C. Monitoring exercise intensity during resistance training using the session RPE scale. J Strength Cond Res. 2004;18(2):353358. PubMed ID: 15142026

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, Joy S. Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc. 2007;39(3):502514. PubMed ID: 17473777 doi:10.1249/mss.0b013e3180d47f0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cerulli G, Benoit DL, Lamontagne M, Caraffa A, Liti A. In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surg Sports Traumatol Arthrosc. 2003;11(5):307311. PubMed ID: 14523613 doi:10.1007/s00167-003-0403-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Beckerman H, Roebroeck ME, Lankhorst GJ, Becher JG, Bezemer PD, Verbeek AL. Smallest real difference, a link between reproducibility and responsiveness. Qual Life Res. 2001;10(7):571578. PubMed ID: 11822790 doi:10.1023/A:1013138911638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Irmischer BS, Harris C, Pfeiffer RP, DeBeliso MA, Adams KJ, Shea KG. Effects of a knee ligament injury prevention exercise program on impact forces in women. J Strength Cond Res. 2004;18(4):703707. PubMed ID: 15574070

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Prapavessis H, McNair PJ, Anderson K, Hohepa M. Decreasing landing forces in children: the effect of instructions. J Orthop Sports Phys Ther. 2003;33(4):204207. PubMed ID: 12723677 doi:10.2519/jospt.2003.33.4.204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3):445455. PubMed ID: 16282579 doi:10.1177/0363546505281241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Gokeler A, Benjaminse A, Welling W, Alferink M, Eppinga P, Otten B. The effects of attentional focus on jump performance and knee joint kinematics in patients after ACL reconstruction. Phys Ther Sport. 2015;16(2):114120. PubMed ID: 25443228 doi:10.1016/j.ptsp.2014.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Phillips SM. Short-term training: when do repeated bouts of resistance exercise become training? Can J Appl Physiol. 2000;25(3):185193. doi:10.1139/h00-014

  • 39.

    Lewek M, Rudolph K, Axe M, Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech. 2002;17(1):5663. doi:10.1016/S0268-0033(01)00097-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Cavanaugh JT, Powers M. ACL rehabilitation progression: where are we now? Curr Rev Musculoskelet Med. 2017;10(3):289296. PubMed ID: 28791612 doi:10.1007/s12178-017-9426-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kyritsis P, Bahr R, Landreau P, Miladi R, Witvrouw E. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50(15):946951. PubMed ID: 27215935 doi:10.1136/bjsports-2015-095908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lind M, Menhert F, Pedersen AB. Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med. 2012;40(7):15511557. PubMed ID: 22562791 doi:10.1177/0363546512446000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tengman E, Brax Olofsson L, Nilsson KG, Tegner Y, Lundgren L, Hager CK. Anterior cruciate ligament injury after more than 20 years: I. Physical activity level and knee function. Scand J Med Sci Sports. 2014;24(6):e491e500. PubMed ID: 24673102 doi:10.1111/sms.12212

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tengman E, Brax Olofsson L, Stensdotter AK, Nilsson KG, Hager CK. Anterior cruciate ligament injury after more than 20 years. II. Concentric and eccentric knee muscle strength. Scand J Med Sci Sports. 2014;24(6):e501e509. doi:10.1111/sms.12215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3910 674 49
Full Text Views 227 64 0
PDF Downloads 218 16 0