Effect of Fatigue on Hip and Knee Joint Biomechanics in Anterior Cruciate Ligament Deficient Patients

Click name to view affiliation

Komeil Dashti Rostami Department of Biomechanics, Faculty of Physical Education and Sports Sciences, University of Mazandaran, Babolsar, Iran

Search for other papers by Komeil Dashti Rostami in
Current site
Google Scholar
PubMed
Close
*
and
Abbey Thomas Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC, USA

Search for other papers by Abbey Thomas in
Current site
Google Scholar
PubMed
Close
Restricted access

The influence of fatigue on landing biomechanics in anterior cruciate ligament deficient (ACLD) patients is poorly understood. The purpose of this study was to examine the effect of fatigue on hip and knee joint biomechanics in deficient patients. Twelve ACLD males and 12 healthy control subjects participated in the study. The ACLD patients landed with increased peak knee flexion angle (F = 15.71, p < .01) and decreased peak knee flexion moment (F = 9.13, p < .01) after fatigue. Furthermore, ACLD patients experienced lower vertical ground reaction forces compared with controls regardless of fatigue state (F = 9.75, p < .01). It seems that ACLD patients use protective strategy in response to fatigue in order to prevent further injury in knee point.

Dashti Rostami (kdr_140@yahoo.com, K.dashti@umz.ac.ir) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Lindström M, Felländer-Tsai L, Wredmark T, Henriksson M. Adaptations of gait and muscle activation in chronic ACL deficiency. Knee Surg Sports Traumatol Arthros. 2010;18(1):106114. PubMed ID: 19693489 doi:10.1007/s00167-009-0886-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Grindem H, Wellsandt E, Failla M, Snyder-Mackler L, Risberg MA. Anterior cruciate ligament injury—who succeeds without reconstructive surgery The Delaware-Oslo ACL cohort study. Orthop J Sports Med. 2018;6(5):232596711877425. PubMed ID: 29854860 doi:10.1177/2325967118774255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Di Fabio R, Graf B, Badke M, Breunig A, Jensen K. Effect of knee joint laxity on long-loop postural reflexes: evidence for a human capsular-hamstring reflex. Exp Brain Res. 1992;90(1):189200. PubMed ID: 1521607 doi:10.1007/BF00229271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Snyder-Mackler L, De Luca PF, Williams PR, Eastlack ME, Bartolozzi AR. Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg. 1994;76(4):555560. PubMed ID: 8150823 doi:10.2106/00004623-199404000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Swanik CB, Lephart SM, Giraldo JL, DeMont RG, Fu FH. Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train. 1999;34(2):121. PubMed ID: 16558554

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kaneko F, Onari K, Kawaguchi K, Tsukisaka K, Roy SH. Electromechanical delay after ACL reconstruction: an innovative method for investigating central and peripheral contributions. J Orthop Sports Phys. 2002;32(4):158165. PubMed ID: 11949664 doi:10.2519/jospt.2002.32.4.158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lass P, Kaalund S, Iefevre S, Arendt-Nielsen L, Sinkjæ T, Simonsen O. Muscle coordination following rupture of the anterior cruciate ligament: electromyographic studies of 14 patients. Acta Orthop Scand. 1991;62(1):914. PubMed ID: 2003399 doi:10.3109/17453679108993083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Swanik CB, Lephart SM, Swanik KA, Stone DA, Fu FH. Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries. Clin Orthop Relat Res. 2004;425:189199. PubMed ID: 15292807 doi:10.1097/00003086-200408000-00027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Chmielewski TL, Rudolph KS, Fitzgerald GK, Axe MJ, Snyder-Mackler L. Biomechanical evidence supporting a differential response to acute ACL injury. Clin Biomech. 2001;16(7):586591. PubMed ID: 11470300 doi:10.1016/S0268-0033(01)00050-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hurd WJ, Snyder-Mackler L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J Orthop Res. 2007;25(10):13691377. PubMed ID: 17557321 doi:10.1002/jor.20440

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hawkins RD, Hulse M, Wilkinson C, Hodson A, Gibson M. The association football medical research programme: an audit of injuries in professional football. Br J Sports Med. 2001;35(1):4347. PubMed ID: 11157461 doi:10.1136/bjsm.35.1.43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gabbett TJ. Influence of training and match intensity on injuries in rugby league. J Sports Sci. 2004;22(5):409417. PubMed ID: 15160594 doi:10.1080/02640410310001641638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med. 2005;33(7):10221029. PubMed ID: 15983125 doi:10.1177/0363546504273047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech. 2008;23(1):8192. PubMed ID: 17889972 doi:10.1016/j.clinbiomech.2007.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, Joy S. Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc. 2007;39(3):502514. PubMed ID: 17473777 doi:10.1249/mss.0b013e3180d47f0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sanna G, O’Connor KM. Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers. Clin Biomech. 2008;23(7):946954. PubMed ID: 18468745 doi:10.1016/j.clinbiomech.2008.03.065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Webster KE, Santamaria LJ, McClelland JA, Feller JA. Effect of fatigue on landing biomechanics after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc. 2012;44(5):910916. PubMed ID: 22089479 doi:10.1249/MSS.0b013e31823fe28d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Thomas AC, Lepley LK, Wojtys EM, McLean SG, Palmieri-Smith RM. Effects of neuromuscular fatigue on quadriceps strength and activation and knee biomechanics in individuals post–anterior cruciate ligament reconstruction and healthy adults. J Orthop Sports Phys Ther. 2015;45(12):10421050. PubMed ID: 26471851 doi:10.2519/jospt.2015.5785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lessi GC, Serrão FV. Effects of fatigue on lower limb, pelvis and trunk kinematics and lower limb muscle activity during single-leg landing after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthros. 2017;25(8):25502558. PubMed ID: 26298713 doi:10.1007/s00167-015-3762-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York, NY: Lawrence Erlbaum Associates; 2013:1974.

  • 21.

    Hefti E, Müller W, Jakob R, Stäubli H-U. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthros. 1993;1(3–4):226234. PubMed ID: 8536037 doi:10.1007/BF01560215

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kadaba MP, Ramakrishnan H, Wootten M. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383392. PubMed ID: 2324857 doi:10.1002/jor.1100080310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lepley LK, Thomas AC, McLean SG, Palmieri-Smith RM. Fatigue’s lack of effect on thigh-muscle activity in anterior cruciate ligament–reconstructed patients during a dynamic-landing task. J Sport Rehabil. 2013;22(2):8392. PubMed ID: 23069653 doi:10.1123/jsr.22.2.83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gokeler A, Eppinga P, Dijkstra P, et al. Effect of fatigue on landing performance assessed with the landing error scoring system (less) in patients after ACL reconstruction. A pilot study. Int J Sports Phys Ther. 2014;9(3):302. PubMed ID: 24944848

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Williams N. The borg rating of perceived exertion (RPE) scale. Occup Med. 2017;67(5):404405. doi:10.1093/occmed/kqx063

  • 26.

    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Erlbaum Associates; 1988.

  • 27.

    Steele J, Fisher J, Giessing J, Gentil P. Clarity in reporting terminology and definitions of set endpoints in resistance training. Muscle Nerve. 2017;56(3):368374. PubMed ID: 28044366 doi:10.1002/mus.25557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev Suppl 2001;81(4):17251789. PubMed ID: 11581501 doi:10.1152/physrev.2001.81.4.1725

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Fuentes A, Hagemeister N, Ranger P, Heron T, de Guise JA. Gait adaptation in chronic anterior cruciate ligament-deficient patients: pivot-shift avoidance gait. Clin Biomech. 2011;26(2):181187. PubMed ID: 20965627 doi:10.1016/j.clinbiomech.2010.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Shabani B, Bytyqi D, Lustig S, Cheze L, Bytyqi C, Neyret P. Gait changes of the ACL-deficient knee 3D kinematic assessment. Knee Surg Sports Traumatol Arthros. 2015;23(11):32593265. PubMed ID: 25026934 doi:10.1007/s00167-014-3169-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Rudolph KS, Axe MJ, Buchanan TS, Scholz JP, Snyder-Mackler L. Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthros. 2001;9(2):6271. PubMed ID: 11354855 doi:10.1007/s001670000166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Amis AA, Bull AM, Lie DT. Biomechanics of rotational instability and anatomic anterior cruciate ligament reconstruction. Oper Tech Orthop. 2005;15(1):2935. doi:10.1053/j.oto.2004.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hewett TE, Ford KR, Myer GD. Anterior cruciate ligament injuries in female athletes: part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am J Sports Med. 2006;34(3):490498. PubMed ID: 16382007 doi:10.1177/0363546505282619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sharifi M, Shirazi-Adl A. Knee flexion angle and muscle activations control the stability of an anterior cruciate ligament deficient joint in gait. J Biomech. 2021;117:110258. PubMed ID: 33493713 doi:10.1016/j.jbiomech.2021.110258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ciccotti MG, Kerlan RK, Perry J, Pink M. An electromyographic analysis of the knee during functional activities: II. The anterior cruciate ligament-deficient and-reconstructed profiles. Am J Sports Med. 1994;22(5):651658. PubMed ID: 7810789 doi:10.1177/036354659402200513

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    McLean SG, Samorezov JE. Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009;41(8):16611672. PubMed ID: 19568192 doi:10.1249/MSS.0b013e31819ca07b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Berchuck M, Andriacchi T, Bach B, Reider B. Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am. 1990;72(6):871877. PubMed ID: 2365720 doi:10.2106/00004623-199072060-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Lin H-C, Hsu H-C, Lu T-W. Bilateral changes in ground reaction forces in patients with unilateral anterior cruciate ligament deficiency during stair locomotion. J Mech. 2011;27(3):437445. doi:10.1017/jmech.2011.46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Oberländer KD, Brüggemann G-P, Höher J, Karamanidis K. Reduced knee joint moment in ACL deficient patients at a cost of dynamic stability during landing. J Biomech. 2012;45(8):13871392. PubMed ID: 22440611 doi:10.1016/j.jbiomech.2012.02.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gerlach KE, White SC, Burton HW, Dorn JM, Leddy JJ, Horvath PJ. Kinetic changes with fatigue and relationship to injury in female runners. Med Sci Sports Exerc. 2005;37(4):657663. PubMed ID: 15809566 doi:10.1249/01.MSS.0000158994.29358.71

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kellis E, Kouvelioti V. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J Electromyogr Kinesiol. 2009;19(1):5564. PubMed ID: 17888681 doi:10.1016/j.jelekin.2007.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Nyland JA, Shapiro R, Stine RL, Horn TS, Ireland ML. Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation. J Orthop Sports Phys Ther. 1994;20(3):132137. PubMed ID: 7951289 doi:10.2519/jospt.1994.20.3.132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Favre J, Clancy C, Dowling AV, Andriacchi TP. Modification of knee flexion angle has patient-specific effects on anterior cruciate ligament injury risk factors during jump landing. The Am J Sports Med. 2016;44(6):15401546. PubMed ID: 26983457 doi:10.1177/0363546516634000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ameer MA, Muaidi QI. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury. Phys Sportsmed. 2017;45(3):337343. PubMed ID: 28628348 doi:10.1080/00913847.2017.1344514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Elias JJ, Faust AF, Chu Y-H, Chao EY, Cosgarea AJ. The soleus muscle acts as an agonist for the anterior cruciate ligament: an in vitro experimental study. Am J Sports Med. 2003;31(2):241246. PubMed ID: 12642259 doi:10.1177/03635465030310021401

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2667 164 6
Full Text Views 178 27 0
PDF Downloads 184 2 0