The Effects of Self-Myofascial Release on Hamstring and Gastrocnemius Muscles Using Foam Roll on Postural Sway, Knee Proprioception, and Dynamic Balance in Recreationally Active Females

in International Journal of Athletic Therapy and Training

Click name to view affiliation

Mahdis DadfarDepartment of Corrective Exercise and Sports Injuries, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran

Search for other papers by Mahdis Dadfar in
Current site
Google Scholar
PubMed
Close
*
and
Foad SeidiDepartment of Health and Sports Medicine, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran

Search for other papers by Foad Seidi in
Current site
Google Scholar
PubMed
Close
Restricted access

Poor joint proprioception and balance maintenance may lead to sports injuries. Numerous studies have indicated that self-myofascial release (SMR) can improve the function of the proprioception and balance systems. Thus, this study aimed to investigate the effects of acute bouts of SMR on the center of pressure displacements during four stance positions, knee joint position sense at 45° and 90° in open kinetic chain tasks, and dynamic balance during the Y-balance test. Forty-two recreationally active females aged 20–25 years were assigned to either the foam roll group performing 1 min × 3 sets of SMR in the posttest session (N = 22) or the control group (N = 20). Joint position sense at 90° (p = .021), dynamic balance in the anterior (p = .007) and posterolateral (p < .001) directions, as well as the composite score (p = .001), improved significantly in the foam roll group. According to the findings, SMR may improve knee joint position sense at 90° and dynamic balance without any significant impacts on postural sway.

  • Collapse
  • Expand
  • 1.

    Lee C-L, Chu I-H, Lyu B-J, Chang W-D, Chang N-J. Comparison of vibration rolling, nonvibration rolling, and static stretching as a warm-up exercise on flexibility, joint proprioception, muscle strength, and balance in young adults. J Sports Sci. 2018;36(22):25752582. PubMed ID: 29697023 doi:10.1080/02640414.2018.1469848

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):16511697. PubMed ID: 23073629 doi:10.1152/physrev.00048.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Han J, Waddington G, Adams R, Anson J, Liu Y. Assessing proprioception: a critical review of methods. J Sport Health Sci. 2016;5(1):8090. PubMed ID: 30356896 doi:10.1016/j.jshs.2014.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Goble DJ, Coxon JP, Van Impe A, et al. Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. J Neurosci. 2011;31(45):16344. PubMed ID: 22072686 doi:10.1523/JNEUROSCI.4159-11.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Weerapong P, Hume PA, Kolt GS. The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Med. 2005;35(3):235256. PubMed ID: 15730338 doi:10.2165/00007256-200535030-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kovacs EJ, Birmingham TB, Forwell L, Litchfield RB. Effect of training on postural control in figure skaters: a randomized controlled trial of neuromuscular versus basic off-ice training programs. Clin J Sport Med. 2004;14(4):215224. PubMed ID: 15273527 doi:10.1097/00042752-200407000-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Tropp H, Ekstrand J, Gillquist J. Stabilometry in functional instability of the ankle and its value in predicting injury. Med Sci Sports Exerc. 1984;16(1):6466. PubMed ID: 6708781 doi:10.1249/00005768-198401000-00013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Payne KA, Berg K, Latin RW. Ankle injuries and ankle strength, flexibility, and proprioception in college basketball players. J Athl Train. 1997;32(3):221225. PubMed ID: 16558453

    • Search Google Scholar
    • Export Citation
  • 9.

    Barrett D. Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg Br. 1991;73(5):833837. PubMed ID: 1894677 doi:10.1302/0301-620X.73B5.1894677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Winter D, Patla A, Frank J. Assessment of balance control in humans. Med Prog Technol. 1990;16(1–2):31. PubMed ID: 2138696

  • 11.

    Gribble P, Robinson R, Hertel J, Denegar C. The effects of gender and fatigue on dynamic postural control. J Sport Rehabil. 2009;18(2):240. PubMed ID: 19561367 doi:10.1123/jsr.18.2.240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Hrysomallis C. Relationship between balance ability, training and sports injury risk. Sports Med. 2007;37(6):547556. PubMed ID: 17503879 doi:10.2165/00007256-200737060-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Puckree T, Koenig J-P. Injury prevalence, stability and balance among female adolescent soccer players. Natl Sun. 2015;21(1:1):92102.

    • Search Google Scholar
    • Export Citation
  • 14.

    Han J, Anson J, Waddington G, Adams R, Liu Y. The role of ankle proprioception for balance control in relation to sports performance and injury. BioMed Res Int. 2015;2015:842804. PubMed ID: 26583139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Röijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 1: basic science and principles of assessment and clinical interventions. Man Ther. 2015;20(3):368377. PubMed ID: 25703454 doi:10.1016/j.math.2015.01.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hiemstra L, Lo I, Fowler P. Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther. 2001;31(10):598605. PubMed ID: 11665747 doi:10.2519/jospt.2001.31.10.598

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Subasi SS, Gelecek N, Aksakoglu G. Effects of different warm-up periods on knee proprioception and balance in healthy young individuals. J Sport Rehabil. 2008;17(2):186205. PubMed ID: 18515917 doi:10.1123/jsr.17.2.186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Smyth E, Waddington G, Witchalls J, et al. Does ankle tape improve proprioception acuity immediately after application and following a netball session? A randomised controlled trial. Phys Ther Sport. 2021;48:2025. PubMed ID: 33341518 doi:10.1016/j.ptsp.2020.12.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Walsh GS. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength. Hum Mov Sci. 2017;55:189195. PubMed ID: 28841537 doi:10.1016/j.humov.2017.08.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cho S-H, Kim S-H. Immediate effect of stretching and ultrasound on hamstring flexibility and proprioception. J Phys Ther Sci. 2016;28(6):18061808. PubMed ID: 27390420 doi:10.1589/jpts.28.1806

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    de Oliveira FCL, de Fontenay BP, Bouyer LJ, Roy J-S. Immediate effects of kinesiotaping on acromiohumeral distance and shoulder proprioception in individuals with symptomatic rotator cuff tendinopathy. Clin Biomech. 2019;61:1621. doi:10.1016/j.clinbiomech.2018.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee J-D, Shin W-S. Immediate effects of neuromuscular control exercise on neck pain, range of motion, and proprioception in persons with neck pain. Phys Ther Rehabil Sci. 2020;9(1):19. doi:10.14474/ptrs.2020.9.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Richman ED, Tyo BM, Nicks CR. Combined effects of self-myofascial release and dynamic stretching on range of motion, jump, sprint, and agility performance. J Strength Cond Res. 2019;33(7):17951803. PubMed ID: 29912081 doi:10.1519/JSC.0000000000002676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Behara B, Jacobson BH. Acute effects of deep tissue foam rolling and dynamic stretching on muscular strength, power, and flexibility in division I linemen. J Strength Cond Res. 2017;31(4):888892. PubMed ID: 26121431 doi:10.1519/JSC.0000000000001051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Anderson BL, Harter RA, Farnsworth JL. The acute effects of foam rolling and dynamic stretching on athletic performance: a critically appraised topic. J Sport Rehabil. 2020;30(3):501506. PubMed ID: 32791495 doi:10.1123/jsr.2020-0059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Freiwald J, Baumgart C, Kühnemann M, Hoppe MW. Foam-rolling in sport and therapy—potential benefits and risks: part 2—positive and adverse effects on athletic performance. Sports Orthop Traumatol. 2016;32(3):267275. doi:10.1016/j.orthtr.2016.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Macdonald GZ, Button DC, Drinkwater EJ, Behm DG. Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 2014;46(1):131142. PubMed ID: 24343353 doi:10.1249/MSS.0b013e3182a123db

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Monteiro E, Cavanaugh M, Frost D, Novaes J. Is self-massage an effective joint range-of-motion strategy? A pilot study. J Bodyw Mov Ther. 2017;21(1):223. PubMed ID: 28167184 doi:10.1016/j.jbmt.2016.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Yildiz M. An acute bout of self-myofascial release increases flexibility without a concomitant deficit in muscle performance in football players. Int J Physiother. 2018;5(3):9297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    De Benito AM, Valldecabres R, Ceca D, Richards J, Igual JB, Pablos A. Effect of vibration vs non-vibration foam rolling techniques on flexibility, dynamic balance and perceived joint stability after fatigue. PeerJ. 2019;7:e8000. PubMed ID: 31788353 doi:10.7717/peerj.8000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hamzeh Shalamzari M, Minoonejad H, Seidi F. The effect of 8-weeks self-myofascial release therapy on joint position sense and dynamic balance in athletes with hamstring shortness. J Rehabil Sci Res. 2020;7(1):3642.

    • Search Google Scholar
    • Export Citation
  • 32.

    Romero-Franco N, Romero-Franco J, Jiménez-Reyes P. Jogging and practical-duration foam-rolling exercises and range of motion, proprioception, and vertical jump in athletes. J Athl Train. 2019;54(11):11711178. PubMed ID: 31483150 doi:10.4085/1062-6050-474-18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    David E, Amasay T, Ludwig K, Shapiro S. The effect of foam rolling of the hamstrings on proprioception at the knee and hip joints. Int J Exerc Sci. 2019;12(1):343. PubMed ID: 30899339

    • Search Google Scholar
    • Export Citation
  • 34.

    Hemmati L, Rojhani-Shirazi Z, Ebrahimi S. Effects of plantar flexor muscle static stretching alone and combined with massage on postural balance. Ann Rehabil Med. 2016;40(5):845850. PubMed ID: 27847714 doi:10.5535/arm.2016.40.5.845

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Van der Wal J. The architecture of the connective tissue in the musculoskeletal system—an often overlooked functional parameter as to proprioception in the locomotor apparatus. Int J Ther Massage Bodywork. 2009;2(4):9. PubMed ID: 21589740

    • Search Google Scholar
    • Export Citation
  • 36.

    Queiroz dos Santos AN, Lemos T, Duarte Carvalho PH, Ferreira AS, Silva JG. Immediate effects of myofascial release maneuver applied in different lower limb muscle chains on postural sway. J Bodyw Mov Ther. 2021;25:151156. PubMed ID: 33714487 doi:10.1016/j.jbmt.2020.10.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Behm DG, Peach A, Maddigan M, et al. Massage and stretching reduce spinal reflex excitability without affecting twitch contractile properties. J Electromyogr Kinesiol. 2013;23(5):12151221. PubMed ID: 23770003 doi:10.1016/j.jelekin.2013.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ajimsha M, Al-Mudahka N, Al-Madzhar J. Effectiveness of myofascial release: systematic review of randomized controlled trials. J Bodyw Mov Ther. 2015;19(1):102. PubMed ID: 25603749 doi:10.1016/j.jbmt.2014.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Halperin I, Aboodarda SJ, Button DC, Andersen LL, Behm DG. Roller massager improves range of motion of plantar flexor muscles without subsequent decreases in force parameters. Int J Sports Phys Ther. 2014;9(1):92. PubMed ID: 24567860

    • Search Google Scholar
    • Export Citation
  • 40.

    Junker D, Stöggl T. The training effects of foam rolling on core strength endurance, balance, muscle performance and range of motion: a randomized controlled trial. J Sports Sci Med. 2019;18(2):229. PubMed ID: 31191092

    • Search Google Scholar
    • Export Citation
  • 41.

    Peacock CA, Krein DD, Silver TA, Sanders GJ, Von Carlowitz K-PA. An acute bout of self-myofascial release in the form of foam rolling improves performance testing. Int J Exerc Sci. 2014;7(3):202211. PubMed ID: 27182404

    • Search Google Scholar
    • Export Citation
  • 42.

    Mirzaee F, Sheikhhoseini R, Piri H. The acute effects of one session reactive neuromuscular training on balance and knee joint position sense in female athletes with dynamic knee valgus. Acta Gymnica. 2020;50(3):122129. doi:10.5507/ag.2020.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Naylor JM, Ko V, Adie S, et al. Validity and reliability of using photography for measuring knee range of motion: a methodological study. BMC Musculoskelet Disord. 2011;12(1):77. PubMed ID: 21496347 doi:10.1186/1471-2474-12-77

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    van Melick N, Meddeler BM, Hoogeboom TJ, Nijhuis-van der Sanden MW, van Cingel RE. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PLoS One. 2017;12(12):e0189876. PubMed ID: 29287067 doi:10.1371/journal.pone.0189876

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Kannabiran B, Paul P, Ragland F. Variation in joint position sense in the contralateral knee following unilateral ACL injury. MOJ Orthop Rheumatol. 2016;4(3):00138. doi:10.15406/mojor.2016.04.00138

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Olsson L, Lund H, Henriksen M, Rogind H, Bliddal H, Danneskiold-Samsøe B. Test–retest reliability of a knee joint position sense measurement method in sitting and prone position. Adv Physiother. 2004;6(1):3747. doi:10.1080/14038190310009894

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Thompson LA, Badache M, Cale S, Behera L, Zhang N. Balance performance as observed by center-of-pressure parameter characteristics in male soccer athletes and non-athletes. Sports. 2017;5(4):86. doi:10.3390/sports5040086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Hertel J, Gay MR, Denegar CR. Differences in postural control during single-leg stance among healthy individuals with different foot types. J Athl Train. 2002;37(2):129. PubMed ID: 12937424

    • Search Google Scholar
    • Export Citation
  • 49.

    Rougier P. The influence of having the eyelids open or closed on undisturbed postural control. Neurosci Res. 2003;47(1):7383. PubMed ID: 12941449 doi:10.1016/S0168-0102(03)00187-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Isableu B, Hlavackova P, Diot B, Vuillerme N. Regularity of center of pressure trajectories in expert gymnasts during bipedal closed-eyes quiet standing. Front Hum Neurosci. 2017;11:317. PubMed ID: 28676748 doi:10.3389/fnhum.2017.00317

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Bonnet CT, Cherraf S, Szaffarczyk S, Rougier PR. The contribution of body weight distribution and center of pressure location in the control of mediolateral stance. J Biomech. 2014;47(7):16031608. PubMed ID: 24679709 doi:10.1016/j.jbiomech.2014.03.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Chaudhry H, Bukiet B, Ji Z, Findley T. Measurement of balance in computer posturography: comparison of methods—a brief review. J Bodyw Mov Ther. 2011;15(1):82. PubMed ID: 21147423 doi:10.1016/j.jbmt.2008.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Terry MA, Winell JJ, Green DW, et al. Measurement variance in limb length discrepancy: clinical and radiographic assessment of interobserver and intraobserver variability. J Pediatr Orthop. 2005;25(2):197201. PubMed ID: 15718901 doi:10.1097/01.bpo.0000148496.97556.9f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    West RM. Best practice in statistics: use the Welch t-test when testing the difference between two groups. Ann Clin Biochem. 2021;58(4):267269. PubMed ID: 33562996 doi:10.1177/0004563221992088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Stillman BC. Making sense of proprioception: the meaning of proprioception, kinaesthesia and related terms. Physiotherapy. 2002;88(11):667676. doi:10.1016/S0031-9406(05)60109-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Riva D, Bianchi R, Rocca F, Mamo C. Proprioceptive training and injury prevention in a professional men’s basketball team: a six-year prospective study. J Strength Cond Res. 2016;30(2):461. PubMed ID: 26203850 doi:10.1519/JSC.0000000000001097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Zhang Q, Trama R, Fouré A, Hautier CA. The immediate effects of self-myofacial release on flexibility, jump performance and dynamic balance ability. J Hum Kinet. 2020;75(1):139148. doi:10.2478/hukin-2020-0043

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Jung J, Choi W, Lee Y, et al. Immediate effect of self-myofascial release on hamstring flexibility. Phys Ther Rehabil Sci. 2017;6(1):4551. doi:10.14474/ptrs.2017.6.1.45

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Wilke J, Müller A-L, Giesche F, Power G, Ahmedi H, Behm DG. Acute effects of foam rolling on range of motion in healthy adults: a systematic review with multilevel meta-analysis. Sports Med. 2020;50(2):387402. PubMed ID: 31628662 doi:10.1007/s40279-019-01205-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Hoch M, Staton G, McKeon P. Dorsiflexion range of motion significantly influences dynamic balance. J Sci Med Sport. 2011;14(1):90. PubMed ID: 20843744 doi:10.1016/j.jsams.2010.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1284 1284 130
Full Text Views 118 118 4
PDF Downloads 163 163 5