The Effect of Maximalist Running Shoes on Impact Loading: A Critically Appraised Topic

in International Journal of Athletic Therapy and Training

Click name to view affiliation

Janice K. LoudonCreighton University, Omaha, NE, USA

Search for other papers by Janice K. Loudon in
Current site
Google Scholar
PubMed
Close
*
and
Marcie SwiftRockhurst University, Overland Park, KS, USA

Search for other papers by Marcie Swift in
Current site
Google Scholar
PubMed
Close
Restricted access

Clinical Scenario: Running injuries are common in runners. The use of maximal cushioned shoes (MAX) has been suggested as a preventive measure for reducing impact loading and thus running-related injuries. Clinical Question: Do maximalist running shoes reduce impact loading compared to traditional shoes in runners? Summary of Key Findings: A search was performed for articles exploring MAX on impact loading in runners. Five articles were included in this critically appraised topic. All were case-controlled laboratory studies that compared the MAX to a traditional running shoe. None of the studies found a reduction in impact loading with use of the MAX. Clinical Bottom Line: Based on five case-controlled studies, a MAX does not reduce impact loading on level surfaces or downhill running. Based on mixed results, the MAX may increase impact forces during level and downhill running. Future research should include randomized controlled trials that assess impact forces after the runner has adapted to the MAX and after running ultradistances. Strength of Recommendation: In agreement with the Center of Evidence-Based Medicine, the consistent results from five Level III intervention studies designate that there is Level C evidence that MAX do not reduce impact loading during a single running trial.

  • Collapse
  • Expand
  • 1.

    Fields KB, Sykes JC, Walker KM, Jackson JC. Prevention of running injuries. Curr Sports Med Rep. 2010;9(3):176182. doi:10.1249/JSR.0b013e3181de7ec5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    van Gent RN, Siem D, van Middelkoop M, van Os AG, Bierma-Zeinstra SMA, Koes BW. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med. 2007;41(8):469480; discussion 480. doi:10.1136/bjsm.2006.033548

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323328. doi:10.1249/01.mss.0000183477.75808.92

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Pohl MB, Mullineaux DR, Milner CE, Hamill J, Davis IS. Biomechanical predictors of retrospective tibial stress fractures in runners. J Biomech. 2008;41(6):11601165. doi:10.1016/j.jbiomech.2008.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Chan ZYS, Au IPH, Lau FOY, Ching ECK, Zhang JH, Cheung RTH. Does maximalist footwear lower impact loading during level ground and downhill running? Eur J Sport Sci. 2018;18(8):10831089. doi:10.1080/17461391.2018.1472298

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    van der Worp H, Vrielink JW, Bredeweg SW. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis. Br J Sports Med. 2016;50(8):450457. doi:10.1136/bjsports-2015-094924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lopes AD, Hespanhol LC, Yeung SS, Costa LOP. What are the main running-related musculoskeletal injuries? A systematic review. Sports Med. 2012;42(10):891905. doi:10.1007/BF03262301

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sun X, Lam W-K, Zhang X, Wang J, Fu W. Systematic review of the role of footwear constructions in running biomechanics: implications for running-related injury and performance. J Sports Sci Med. 2020;19(1):2037.

    • Search Google Scholar
    • Export Citation
  • 9.

    Willy RW, Paquette MR. The physiology and biomechanics of the master runner. Sports Med Arthroscopy Rev. 2019;27(1):1521. doi:10.1097/JSA.0000000000000212

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129133. doi:10.1016/S0004-9514(09)70043-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Pollard CD, Ter Har JA, Hannigan JJ, Norcross MF. Influence of maximal running shoes on biomechanics before and after a 5k run. Orthop J Sports Med. 2018;6(6):232596711877572. doi:10.1177/2325967118775720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kulmala J-P, Kosonen J, Nurminen J, Avela J. Running in highly cushioned shoes increases leg stiffness and amplifies impact loading. Sci Rep. 2018;8(1):17496. doi:10.1038/s41598-018-35980-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Arthur K, Aminaka N. No immediate effects of highly cushioned shoes on basic running biomechanics. Kinesiology. 2018;50(1):124130.

  • 14.

    Hannigan JJ, Pollard CD. Differences in running biomechanics between a maximal, traditional, and minimal running shoe. J Sci Med Sport. 2020;23(1):1519. doi:10.1016/j.jsams.2019.08.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Mo S, Chan ZYS, Lai KKY, et al. Effect of minimalist and maximalist shoes on impact loading and footstrike pattern in habitual rearfoot strike trail runners: an in-field study. Eur J Sport Sci. 2021;21(2):183191. doi:10.1080/17461391.2020.1738559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Agresta C, Kessler S, Southern E, Goulet GC, Zernicke R, Zendler JD. Immediate and short-term adaptations to maximalist and minimalist running shoes. Footwear Sci. 2018;10(2):95107. doi:10.1080/19424280.2018.1460624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sinclair J. The influence of minimalist, maximalist and conventional footwear on impact shock attenuation during running. Mov Sport Sci/Sci Mot. 2017;(1):5964. doi:10.3917/sm.095.0059

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hannigan JJ, Pollard CD. Comparing walking biomechanics of older females in maximal, minimal, and traditional shoes. Gait & Posture. 2021;83:245249. doi:10.1016/j.gaitpost.2020.10.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lieberman DE, Venkadesan M, Werbel WA, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531535. doi:10.1038/nature08723

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Robbins S, Waked E. Hazard of deceptive advertising of athletic footwear. Br J Sports Med. 1997;31(4):299303. doi:10.1136/bjsm.31.4.299

  • 21.

    Giandolini M, Horvais N, Rossi J, Millet GY, Samozino P, Morin J-B. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. J Biomech. 2016;49(9):17651771. doi:10.1016/j.jbiomech.2016.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Zhang JH, McPhail AJC, An WW, et al. A new footwear technology to promote non-heelstrike landing and enhance running performance: fact or fad? J Sports Sci. 2017;35(15):15331537. doi:10.1080/02640414.2016.1224915

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 787 787 226
Full Text Views 105 105 71
PDF Downloads 134 134 92