Assessment of Bilateral Shoulder Range of Motion in Firefighter Trainees Using a Markerless Motion Capture System

Click name to view affiliation

Conner Howard Oklahoma State University Center for Health Sciences, Tulsa, OK, USA

Search for other papers by Conner Howard in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9672-3403 *
,
Alexis Kahnt Department of Athletic Training, Oklahoma State University, Stillwater, OK, USA

Search for other papers by Alexis Kahnt in
Current site
Google Scholar
PubMed
Close
,
Jennifer L. Volberding Department of Athletic Training, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA

Search for other papers by Jennifer L. Volberding in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2224-9611
, and
Jay Dawes Tactical Fitness and Nutrition Lab, Oklahoma State University, Stillwater, OK, USA

Search for other papers by Jay Dawes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2668-8873
Restricted access

The unpredictable environments firefighters face paired with biomechanically compromising shoulder movements, such as overhead and lifting movements, place this population at an increased risk for shoulder injury. The purpose of this study was to assess firefighter trainees’ bilateral shoulder range of motion (ROM) using the Dynamic Athletic Research Institute Motion system. Retrospective anthropometric and ROM data for 31 male firefighter trainees were analyzed. Firefighter trainees’ mean shoulder ROM for bilateral external rotation, internal rotation, and extension were lower than previously published values. External rotation demonstrated the lowest percentage of trainees within normal ROM (left—6.67%, right—16.67%). Noting the susceptibility of upper extremity injuries among firefighters, establishing baseline ROM measurements for reference may improve musculoskeletal evaluations, training interventions, and injury rehabilitation.

The inherent range of motion of the shoulder joint makes the shoulder susceptible to injury, especially in populations that frequently perform overhead tasks, heavy lifting, and dragging, such as firefighters.

Firefighter trainees’ shoulder range of motion differs from previously published data with external rotation demonstrating the most restriction.

The use of an accurate motion capture system may allow for precise identification of shoulder dysfunction and subsequent targeted therapy to improve musculoskeletal quality in firefighters.

  • Collapse
  • Expand
  • 1.

    Elsner KL, Kolkhorst FW. Metabolic demands of simulated firefighting tasks. Ergonomics. 2008;51(9):14181425. PubMed ID: 18802822 doi:10.1080/00140130802120259

    • Search Google Scholar
    • Export Citation
  • 2.

    Campbell R, Evarts B, Molis JL. United States Firefighter injuries in 2019. NFPA J. Published online 2020: 114.

  • 3.

    Nazari G, MacDermid J, Cramm H. Prevalence of musculoskeletal disorders among Canadian firefighters: a systematic review and meta-analysis. J Mil Veteran Fam Health. 2020;6(1):8397. doi:10.3138/jmvfh-2019-0024

    • Search Google Scholar
    • Export Citation
  • 4.

    Butler RJ, Contreras M, Burton LC, Plisky PJ, Goode A, Kiesel K. Modifiable risk factors predict injuries in firefighters during training academies. Work. 2013;46(1):1117. PubMed ID: 23324700 doi:10.3233/WOR-121545

    • Search Google Scholar
    • Export Citation
  • 5.

    La Reau AC, Urso ML, Long B. Specified training to improve functional fitness and reduce injury and lost workdays in active duty firefighters. J Exerc Physiol Online. 2018;21(5):4957. https://o2x.com/wp-content/uploads/2018/10/JEPonlineOCTOBER2018_Urso.pdf

    • Search Google Scholar
    • Export Citation
  • 6.

    Frost DM, Beach TAC, Crosby I, McGill SM. Firefighter injuries are not just a fireground problem. Work. 2015;52(4):835842. PubMed ID: 26409354 doi:10.3233/WOR-152111

    • Search Google Scholar
    • Export Citation
  • 7.

    Lockie RG, Orr RM, Montes F, Ruvalcaba TJ, Dawes JJ. Differences in fitness between firefighter trainee academy classes and normative percentile rankings. Sustain Sci Pract Policy. 2022;14(11):6548. doi:10.3390/su14116548

    • Search Google Scholar
    • Export Citation
  • 8.

    Stone BL, Alvar BA, Orr RM, et al. Impact of an 11-week strength and conditioning program on firefighter trainee fitness. Sustain Sci Pract Policy. 2020;12(16):6541. doi:10.3390/su12166541

    • Search Google Scholar
    • Export Citation
  • 9.

    Terry GC, Chopp TM. Functional anatomy of the shoulder. J Athl Train. 2000;35(3):248255. PubMed ID: 16558636

  • 10.

    Shanley E, Rauh MJ, Michener LA, Ellenbecker TS, Garrison JC, Thigpen CA. Shoulder range of motion measures as risk factors for shoulder and elbow injuries in high school softball and baseball players. Am J Sports Med. 2011;39(9):19972006. PubMed ID: 21685316 doi:10.1177/0363546511408876

    • Search Google Scholar
    • Export Citation
  • 11.

    Rundquist PJ. Alterations in scapular kinematics in subjects with idiopathic loss of shoulder range of motion. J Orthop Sports Phys Ther. 2007;37(1):1925. PubMed ID: 17286095 doi:10.2519/jospt.2007.2121

    • Search Google Scholar
    • Export Citation
  • 12.

    Saito H, Harrold ME, Cavalheri V, McKenna L. Scapular focused interventions to improve shoulder pain and function in adults with subacromial pain: a systematic review and meta-analysis. Physiother Theory Pract. 2018;34(9):653670. PubMed ID: 29351510 doi:10.1080/09593985.2018.1423656

    • Search Google Scholar
    • Export Citation
  • 13.

    Pozzi F, Plummer HA, Shanley E, et al. Preseason shoulder range of motion screening and in-season risk of shoulder and elbow injuries in overhead athletes: systematic review and meta-analysis. Br J Sports Med. 2020;54(17):10191027. PubMed ID: 31937577 doi:10.1136/bjsports-2019-100698

    • Search Google Scholar
    • Export Citation
  • 14.

    Moore SD, Uhl TL, Kibler WB. Improvements in shoulder endurance following a baseball-specific strengthening program in high school baseball players. Sports Health. 2013;5(3):233238. PubMed ID: 24427394 doi:10.1177/1941738113477604

    • Search Google Scholar
    • Export Citation
  • 15.

    Harshbarger ND, Eppelheimer BL, Valovich McLeod TC, Welch McCarty C. The effectiveness of shoulder stretching and joint mobilizations on posterior shoulder tightness. J Sport Rehabil. 2013;22(4):313319. PubMed ID: 23799831 doi:10.1123/jsr.22.4.313

    • Search Google Scholar
    • Export Citation
  • 16.

    Tooth C, Gofflot A, Schwartz C, et al. Risk factors of overuse shoulder injuries in overhead athletes: a systematic review. Sports Health. 2020;12(5):478487. PubMed ID: 32758080 doi:10.1177/1941738120931764

    • Search Google Scholar
    • Export Citation
  • 17.

    Kim Y, Lee JM, Wellsandt E, Rosen AB. Comparison of shoulder range of motion, strength, and upper quarter dynamic balance between NCAA division I overhead athletes with and without a history of shoulder injury. Phys Ther Sport. 2020;42:5360. PubMed ID: 31887553 doi:10.1016/j.ptsp.2019.12.007

    • Search Google Scholar
    • Export Citation
  • 18.

    Michaelides MA, Parpa KM, Henry LJ, Thompson GB, Brown BS. Assessment of physical fitness aspects and their relationship to firefighters’ job abilities. J Strength Cond Res. 2011;25(4):956965. PubMed ID: 20703167 doi:10.1519/JSC.0b013e3181cc23ea

    • Search Google Scholar
    • Export Citation
  • 19.

    Le AB, McNulty LA, Dyal MA, DeJoy DM, Smith TD. Firefighter overexertion: a continuing problem found in an analysis of non-fatal injury among career firefighters. Int J Environ Res Public Health. 2020;17(21):7906. doi:10.3390/ijerph17217906

    • Search Google Scholar
    • Export Citation
  • 20.

    Camp CL, Zajac JM, Pearson DB, et al. Decreased shoulder external rotation and flexion are greater predictors of injury than internal rotation deficits: analysis of 132 pitcher-seasons in professional baseball. Arthroscopy. 2017;33(9):16291636. PubMed ID: 28865566 doi:10.1016/j.arthro.2017.03.025

    • Search Google Scholar
    • Export Citation
  • 21.

    Ishigaki T, Hirokawa M, Ezawa Y, Yamanaka M. Supraspinatus tendon changes and glenohumeral range of motion in college baseball players. Int J Sports Med. 2022;43(2):145150. PubMed ID: 34265860 doi:10.1055/a-1524-2038

    • Search Google Scholar
    • Export Citation
  • 22.

    Vairo GL, Duffey ML, Owens BD, Cameron KL. Clinical descriptive measures of shoulder range of motion for a healthy, young and physically active cohort. Sports Med Arthrosc Rehabil Ther Technol. 2012;4(1):33. PubMed ID: 22964130 doi:10.1186/1758-2555-4-33

    • Search Google Scholar
    • Export Citation
  • 23.

    Castro-Luna G, Jiménez-Rodríguez D. Relative and absolute reliability of a motor assessment system using KINECT® camera. Int J Environ Res Public Health. 2020;17(16):5807. doi:10.3390/ijerph17165807

    • Search Google Scholar
    • Export Citation
  • 24.

    Schmitz A, Ye M, Shapiro R, Yang R, Noehren B. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. J Biomech. 2014;47(2):587591. PubMed ID: 24315287 doi:10.1016/j.jbiomech.2013.11.031

    • Search Google Scholar
    • Export Citation
  • 25.

    Sonnenfeld JJ, Crutchfield CR, Swindell HW, et al. An analysis of in vivo hip kinematics in elite baseball batters using a markerless motion-capture system. Sports Med Arthrosc Rehabil Ther Technol. 2021;3(3):e909e917. doi:10.1016/j.asmr.2021.03.006

    • Search Google Scholar
    • Export Citation
  • 26.

    Cabarkapa D, Fry AC, Mosier EM. Validity of 3-D markerless motion capture system for assessing basketball dunk kinetics—A case study. Sport J. Published online 2020. https://thesportjournal.org/article/validity-of-3-d-markerless-motion-capture-system-for-assessing-basketball-dunk-kinetics/

    • Search Google Scholar
    • Export Citation
  • 27.

    Martinez HR, Garcia-Sarreon A, Camara-Lemarroy C, Salazar F, Guerrero-González ML. Accuracy of markerless 3D motion capture evaluation to differentiate between on/off status in Parkinson’s disease after deep brain stimulation. Parkinsons Dis. 2018;2018:5830364. PubMed ID: 30363689 doi:10.1155/2018/5830364

    • Search Google Scholar
    • Export Citation
  • 28.

    U.S. Food & Drug Administration. March 2019 510(K) Clearances. Published April 2019, accessed July 1, 2022. https://wayback.archive-it.org/7993/20201226000857/https://www.fda.gov/medical-devices/510k-clearances/march-2019-510k-clearances

    • Search Google Scholar
    • Export Citation
  • 29.

    Perrott MA, Pizzari T, Cook J, McClelland JA. Comparison of lower limb and trunk kinematics between markerless and marker-based motion capture systems. Gait Posture. 2017;52:5761. PubMed ID: 27871019 doi:10.1016/j.gaitpost.2016.10.020

    • Search Google Scholar
    • Export Citation
  • 30.

    Ekanayake CD, DeMik DE, Glass NA, Kotseos C, Callaghan JJ, Ratigan BL. Comparison of patient-reported outcomes and functional assessment using a marker-less image capture system in end-stage knee arthritis. J Arthroplasty. 2022;37:21582163. doi:10.1016/j.arth.2022.05.039

    • Search Google Scholar
    • Export Citation
  • 31.

    Fleisig GS, Slowik JS, Wassom D, Yanagita Y, Bishop J, Diffendaffer A. Comparison of marker-less and marker-based motion capture for baseball pitching kinematics. Sports Biomech. Published online May 19, 2022:110. doi:10.1080/14763141.2022.2076608

    • Search Google Scholar
    • Export Citation
  • 32.

    DARI Motion: Technology. Dynamic Athletic Research Institute (DARI) Motion. https://www.darimotion.com/technology. Accessed June 28, 2022.

    • Search Google Scholar
    • Export Citation
  • 33.

    Stoll C, Hasler N, Gall J, Seidel HP, Theobalt C. Fast articulated motion tracking using a sums of Gaussians body model. Paper presented at: 2011 International Conference on Computer Vision; 2011:951958.

    • Search Google Scholar
    • Export Citation
  • 34.

    Diffendaffer AZ, Bagwell MS, Fleisig GS, et al. The clinician’s guide to baseball pitching biomechanics. Sports Health. Published online April 23, 2022. doi:10.1177/19417381221078537

    • Search Google Scholar
    • Export Citation
  • 35.

    Starkey C, Brown SD. Examination of Orthopedic & Athletic Injuries. F.A. Davis; 2015.

  • 36.

    Ciesielska-Wróbel I, DenHartog E, Barker R. Measuring the effects of structural turnout suits on firefighter range of motion and comfort. Ergonomics. 2017;60(7):9971007. PubMed ID: 27562913 doi:10.1080/00140139.2016.1229044

    • Search Google Scholar
    • Export Citation
  • 37.

    Matsel KA, Butler RJ, Malone TR, Hoch MC, Westgate PM, Uhl TL. Current concepts in arm care exercise programs and injury risk reduction in adolescent baseball players: a clinical review. Sports Health. 2021;13(3):245250. PubMed ID: 33514287 doi:10.1177/1941738120976384

    • Search Google Scholar
    • Export Citation
  • 38.

    Kibler WB, Kuhn JE, Wilk K, et al. The disabled throwing shoulder: spectrum of pathology—10-year update. Arthroscopy. 2013;29(1):141161.e26. doi:10.1016/j.arthro.2012.10.009

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 872 872 57
Full Text Views 241 241 54
PDF Downloads 180 180 40