The Ability of Baseline and Normative Neurocognitive Testing to Identify Cognitive Impairments Following Concussion: A Critically Appraised Topic

in International Journal of Athletic Therapy and Training
View More View Less
  • 1 A.T. Still University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Focused Clinical Question: In a high school, college, and professional athletic population, does individualized baseline tests increase the diagnostic accuracy (e.g., sensitivity and specificity) of identifying cognitive impairments when utilizing neurocognitive testing compared to normative data? Clinical Bottom Line: There was insufficient evidence to definitively suggest the use of individualized baseline data over the use of normative data during a postinjury assessment.

The authors are with the Athletic Training Program, A.T. Still University, Mesa, AZ, USA.

Hattrup (sa199462@atsu.edu) is corresponding author.
  • 1.

    McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51:838847. PubMed ID: 28446457 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47(5):250258. PubMed ID: 23479479 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Harmon KG, Clugston JR, Dec K, et al. American Medical Society for Sports Medicine position statement on concussion in sport. Br J Sports Med. 2019;53(4):213225. PubMed ID: 30705232 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Williams RM, Welch CE, Weber ML, Parsons JT, Valovich McLeod TC. Athletic trainers’ management practices and referral patterns for adolescent athletes after sport-related concussion. Sports Health. 2014;6(5):434439. PubMed ID: 25177421 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Buckley TA, Burdette G, Kelly K. Concussion-Management Practice Patterns of National Collegiate Athletic Association Division II and III Athletic Trainers: How the Other Half Lives. J Athl Train. 2015;50(8):879888. PubMed ID: 26196701 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    OCEBM Levels of Evidence Working Group. The Oxford 2011 Levels of Evidence. Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/index.aspx?o=5653

    • Search Google Scholar
    • Export Citation
  • 7.

    Von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344349. PubMed ID: 18313558 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Echemendia RJ, Bruce JM, Bailey CM, Sanders JF, Arnett P, Vargas G. The utility of post-concussion neuropsychological data in identifying cognitive change following sports-related MTBI in the absence of baseline data. Clin Neuropsychol. 2012;26(7):10771091. PubMed ID: 23003560 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Schmidt JD, Register-Mihalik JK, Mihalik JP, Kerr ZY, Guskiewicz KM. Identifying Impairments after concussion: normative data versus individualized baselines. Med Sci Sports Exerc. 2012;44(9):16211628. PubMed ID: 22525765 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Louey AG, Cromer JA, Schembri AJ, et al. Detecting cognitive impairment after concussion: sensitivity of change from baseline and normative data methods using the CogSport/Axon cognitive test battery. Arch Clin Neuropsychol. 2014;29(5):432441. PubMed ID: 24813184 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Schatz P, Robertshaw S. Comparing post-concussive neurocognitive test data to normative data presents risks for under-classifying “above average” athletes. Arch Clin Neuropsychol. 2014;29(7):625632. PubMed ID: 25178629 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hinton-Bayre AD. Normative versus baseline paradigms for detecting neuropsychological impairment following sports-related concussion. Brain Impairment. 2015;16(02):8089. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ebell MH, Siwek J, Weiss BD, et al. Strength of Recommendation Taxonomy (SORT): A patient-centered approach to grading evidence in the medical literature. Am Fam Physician. 2004;17(1):5967. PubMed ID: 14971837 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bauer RM, Iverson GL, Cernich AN, Binder LM, Ruff RM, Naugle RI. Computerized neuropsychological assessment devices: joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. Arch Clin Neuropsychol. 2012;27(3):362373. PubMed ID: 22382386 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Farnsworth JL 2nd, Dargo L, Ragan BG, Kang M. Reliability of computerized neurocognitive tests for concussion assessment: a meta-analysis. J Athl Train. 2017;52(9):826833. PubMed ID: 28771032 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Erdal K. Neuropsychological testing for sports-related concussion: how athletes can sandbag their baseline testing without detection. Arch Clin Neuropsychol. 2012;27(5):473479. PubMed ID: 22684033 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Schatz P, Moser RS, Solomon GS, Ott SD, Karpf R. Prevalence of invalid computerized baseline neurocognitive test results in high school and collegiate athletes. J Athl Train. 2012;47(3):289296. PubMed ID: 22892410 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tsushima WT, Tsushima VG, Murata NM. ImPACT normative data of ethnically diverse adolescent athletes. Clin J Sport Med. 2020;30(1):5259. PubMed ID: 31855913 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Elbin RJ, Kontos AP, Kegel N, Johnson E, Burkhart S, Schatz P. Individual and combined effects of LD and ADHD on computerized neurocognitive concussion test performance: evidence for separate norms. Arch Clin Neuropsychol. 2013;28(5):476484. PubMed ID: 23608188 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wallace J, Covassin T, Moran R, Deitrick JM. Factors contributing to disparities in baseline neurocognitive performance and concussion symptom scores between black and white collegiate athletes. J Racial Ethn Health Disparities. 2018;5(4):894900. PubMed ID: 29098599 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Prien A, Junge A, Brugger P, Straumann D, Feddermann-Demont N. Neurocognitive performance of 425 top-level football players: sport-specific norm values and implications. Arch Clin Neuropsychol. 2019;34(4):575584. PubMed ID: 30165564 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Walton SR, Broshek DK, Freeman JR, et al. Institutionally based ImPACT Test® Normative values may differ from manufacturer-provided normative values. Arch Clin Neuropsychol. 2020;20(3):275282. PubMed ID: 31711107 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 220 220 22
Full Text Views 5 5 0
PDF Downloads 6 6 0