Effect of Head Accelerations on Dynamic Balance in Collegiate Women’s Rugby

in International Journal of Athletic Therapy and Training
Eric Schussler PhD, ATC, PT, CSCS*,1, Ryan S. McCann PhD, ATC, CSCS*,1, Nicholas Reilly MS, ACSM-CEP*,1, Thomas R. Campbell ATC*,1, and Jessica C. Martinez PhD, ATC*,1
View More View Less
  • 1 Old Dominion University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

The effect of subconcussive impacts on balance are not well known. The purpose of this study is to determine the effect of subconcussive impacts on dynamic balance over the course of a rugby season. Significant negative linear correlations were found between total peak linear acceleration and dominant leg (r = −.585, p = .046) and bilateral score (r = −.615, p = .033); also between total impacts over 10g and dominant leg (r = −.653, p = .021), nondominant leg (r = −.687, p = .014), and the combined total (r = −.731, p = .007). Results indicate subconcussive impacts may affect dynamic balance over the course of a competitive season of women’s collegiate rugby.

The authors are with Old Dominion University, Hampton Boulevard, Norfolk, VA, USA.

Schussler (eschussl@odu.edu) is corresponding author.
  • 1.

    McLeod TCV, Hale TD. Vestibular and balance issues following sport-related concussion. Brain Inj. 2015;29(2):175184. doi:

  • 2.

    Manley G, Gardner AJ, Schneider KJ, et al. . A systematic review of potential long-term effects of sport-related concussion. Br J Sports Med. 2017;51(12):969977. PubMed ID: 28455362 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McCrory P, Meeuwisse W, Dvorak J, et al. . Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. Published online April 26, 2017:bjsports-2017-097699

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Broglio SP, Eckner JT, Paulson HL, Kutcher J. Cognitive decline and aging: the role of concussive and sub-concussive impacts. Exerc Sport Sci Rev. 2012;40(3):138144. PubMed ID: 22728452 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kawata K, Tierney R, Phillips J, Jeka JJ. Effect of repetitive sub-concussive head impacts on ocular near point of convergence. Int J Sports Med. 2016;37(5):405410. PubMed ID: 26859643 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Moore RD, Lepine J, Ellemberg D. The independent influence of concussive and sub-concussive impacts on soccer players’ neurophysiological and neuropsychological function. Int J Psychophysiol. 2017;112:2230. PubMed ID: 27867100 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Slobounov SM, Walter A, Breiter HC, et al. . The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: a multi-modal neuroimaging study. NeuroImage Clin. 2017;14:708718. PubMed ID: 28393012 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Miyashita TL, Diakogeorgiou E, Marrie K. Correlation of head impacts to change in balance error scoring system scores in division I Men’s lacrosse players. Sports Health. 2017;9(4):318323. PubMed ID: 28060567 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Murray NG, Grimes KE, Shiflett ED, et al. . Repetitive head impacts do not affect postural control following a competitive athletic season. Int J Psychophysiol. 2018;132:8186. PubMed ID: 28982552 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jennings D, Sells P, Allison J, et al. . EFFECTS of a season of subconcussive contact on child-scat3 scores in 8–12 year-old male athletes. Int J Sports Phys Ther. 2015;10(5):667675. PubMed ID: 26491617

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gysland SM, Mihalik JP, Register-Mihalik JK, Trulock SC, Shields EW, Guskiewicz KM. The relationship between subconcussive impacts and concussion history on clinical measures of neurologic function in collegiate football players. Ann Biomed Eng. 2012;40(1):1422. PubMed ID: 21994067 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Avery M, Wattie N, Holmes M, Dogra S. Seasonal changes in functional fitness and neurocognitive assessments in youth ice-hockey players. J Strength Cond Res. 2018;32(11):31433152. PubMed ID: 29239998 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Matthew H, Nicole C, Emily H-G, Nicholas H, Johanna H. Y-Balance test asymmetry is greater in collegiate athletes with a history of concussion. Neurology. 2018;91(23, suppl 1):S26.1S26. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hoch MC, Welsch LA, Hartley EM, Powden CJ, Hoch JM. Y-Balance test performance after a competitive field hockey season: a pretest–posttest study. J Sport Rehabil. 2017;26(5). doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Funk J, Rowson S, Daniel RW, Duma SM. Validation of concussion risk curves for collegiate football players derived from HITS data. Ann Biomed Eng. 2012;40(1):7989. PubMed ID: 21994060 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    King D, Hume PA, Brughelli M, Gissane C. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches. Am J Sports Med. Published online December 22, 2014.

    • Search Google Scholar
    • Export Citation
  • 17.

    Daniel RW, Rowson S, Duma SM. Head impact exposure in youth football: middle school ages 12 to 14 years. J Biomech Eng. 2014;136(9):094501. PubMed ID: 24950298 doi:

  • 18.

    Crisco JJ, Fiore R, Beckwith JG, et al. . Frequency and location of head impact exposures in individual collegiate football players. J Athl Train. 2010;45(6):549559. PubMed ID: 21062178 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Morrison R, Petit KM, Kuenze C, Moran RN, Covassin T. Preseason to postseason changes on the BTrackS force plate in a sample of college athletes. J Sport Rehabil. 2020;29(1):134136. PubMed ID: 31034328 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Santos F, Caccese JB, Gongora M, et al. . Greater exposure to repetitive subconcussive head impacts is associated with vestibular dysfunction and balance impairments during walking. Neurology. 2018;91(23 supplement 1):S27.2S27. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Post A, Oeur A, Hoshizaki B, Gilchrist MD. The influence of centric and non-centric impacts to American football helmets on the correlation between commonly used metrics in brain injury research. Published online 2012:11.

    • Search Google Scholar
    • Export Citation
  • 22.

    Broglio SP, Eckner JT, Surma T, Kutcher JS. Post-concussion cognitive declines and symptomatology are not related to concussion biomechanics in high school football players. J Neurotrauma. 2011;28(10):20612068. PubMed ID: 21644811 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stemper BD, Shah AS, Pintar FA, et al. . Head rotational acceleration characteristics influence behavioral and diffusion tensor imaging outcomes following concussion. Ann Biomed Eng. 2015;43(5):10711088. PubMed ID: 25344352 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    King AI, Yang KH, Zhang L, Hardy W, Viano DC. Is head injury caused by linear or angular acceleration. In: IRCOBI Conference. 2003:112. Accessed January 22, 2016. http://snell-helmets.org/docs/articles/hic/King_IRCOBI_2003.pdf

    • Search Google Scholar
    • Export Citation
  • 25.

    Zhang L, Yang KH, King AI. Biomechanics of neurotrauma. Neurol Res. 2001;23(2–3):144156. PubMed ID: 11320593 doi:

  • 26.

    Post A, Blaine Hoshizaki T. Rotational acceleration, brain tissue strain, and the relationship to concussion. J Biomech Eng. 2015;137(3). doi:

  • 27.

    Takhounts EG, Craig MJ, Moorhouse K, McFadden J, Hasija V. Development of brain injury criteria (BrIC). Stapp Car Crash J. 2013;57:243266. PubMed ID: 24435734

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Campolettano ET, Gellner RA, Smith EP, et al. . Development of a concussion risk function for a youth population using head linear and rotational acceleration. Ann Biomed Eng. 2020;48(1):92103. PubMed ID: 31659605 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bartsch A, Samorezov S, Benzel E, Miele V, Brett D. Validation of an “Intelligent Mouthguard” single event head impact dosimeter. Stapp Car Crash J. 2014;58:127. PubMed ID: 26192948

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Howell DR, Lynall RC, Buckley TA, Herman DC. Neuromuscular control deficits and the risk of subsequent injury after a concussion: a scoping review. Sports Med. 2018;48(5):10971115. PubMed ID: 29453743 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Alsop JC, Chalmers DJ, Williams SM, Quarrie KL, Marshall SW, Sharples KJ. Temporal patterns of injury during a rugby season. J Sci Med Sport. 2000;3(2):97109. PubMed ID: 11104302 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 93 93 19
Full Text Views 10 10 6
PDF Downloads 8 8 4