Aging and the Osteogenic Response to Mechanical Loading

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The osteogenic response to mechanical stress is blunted with aging. It has been postulated that this decline in responsiveness is related to (a) a limited ability to engender the strain necessary to reach the bone modeling threshold, due to decreased muscle mass and strength, and/or (b) a decline in certain hormones or growth factors that may interact with mechanical signals to change the sensitivity of bone cells to strain. There is reason to believe that both of these factors contribute to the reduced ability to increase bone mass through exercise with advancing age. Weight-bearing endurance exercise and resistance exercise have both been found to increase bone mass in older women and men. However, exercise training studies involving older individuals have generally resulted in increased bone mineral density only when the exercise is quite vigorous. There is also evidence that the osteogenic response to mechanical loading is enhanced by estrogens. Whether age-related changes in other factors (e.g., other hormones, growth factors, cytokines) also contribute to the reduced responsiveness of the aged skeleton to mechanical loading remains to be investigated.

W.M. Kohrt is with the Department of Medicine in the Division of Geriatric Medicine at the University of Colorado Health Sciences Center, Denver, CO 80262.

All Time Past Year Past 30 Days
Abstract Views 208 164 10
Full Text Views 11 6 0
PDF Downloads 8 5 0