No Effect of Pre-exercise Meal on Substrate Metabolism and Time Trial Performance during Intense Endurance Exercise

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

To determine the effect of macronutrient composition of pre-exercise meals on exercise metabolism and performance, 8 trained men exercised for 30 min above lactate threshold (30LT), followed by a 20-km time trial (TT). Approximately 3.5 h before exercise, subjects consumed a carbohydrate meal (C; 3 g carbohydrate/kg), an isoenergetic fat meal (F; 1.3 g fat/kg), or a placebo meal (P; no energy content) on 3 separate occasions in randomized order. Treatments had no effect on carbohydrate oxidation during exercise, but C decreased whole-body fat oxidation during the last 5 min of 30LT and TT, respectively (3.2 ± 1.6 and 4.8 ± 2.1 mmol · kg−1 · min−1, p < .05) when compared to F (13.3 ± 1.6 and 16.5 ± 2.7 mmol · kg−1 · min−1) and P (15.9 ± 2.7 and 17.0 ± 3.2 mmol · kg−1 · min−1). Glucose rate of appearance (Ra) and disappearance (Rd), and muscle glycogen utilization were not significantly different among treatments during exercise. TT performances were similar for C, F, and P (32.7 ± 0.5 vs. 33.1 ± 1.1 and 33.0 ± 0.8 min, p > .05). We conclude that the consumption of a pre-exercise meal has minor effects on fat oxidation during high-intensity exercise, and no effect on carbohydrate oxidation or TT performance.

D. Paul is with the United States Department of Agriculture, Building 308, Center Rd., Beltsville, MD 20770. K.A. Jacobs is with the School of Physical Activity and Educational Services at The Ohio State University, Columbus, OH 43210. R.J. Geor and K.W. Hinchcliff are with the Department of Veterinary Clinical Sciences at The Ohio State University.