Supplementation with β-Hydroxy- β-Methylbutyrate (HMB) and α-Ketoisocaproic Acid (KIC) Reduces Signs and Symptoms of Exercise-Induced Muscle Damage in Man

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Ken A. van Someren
Search for other papers by Ken A. van Someren in
Current site
Google Scholar
PubMed
Close
,
Adam J. Edwards
Search for other papers by Adam J. Edwards in
Current site
Google Scholar
PubMed
Close
, and
Glyn Howatson
Search for other papers by Glyn Howatson in
Current site
Google Scholar
PubMed
Close
Restricted access

This study examined the effects of β-hydroxy-β-methylbutyrate (HMB) and α-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g α-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P < 0.05). HMB/KIC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P < 0.05). In addition, DOMS was reduced at 24 h post-exercise (P < 0.05) in the HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.

The authors are with the School of Life Sciences, Kingston University, Kingston-upon-Thames, KT1 2EE, United Kingdom.

  • Collapse
  • Expand