Racial Differences in Postprandial Oxidative Stress with and Without Acute Exercise

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

High-kilocalorie feedings induce oxidative stress. Acute exercise has the potential to attenuate postprandial oxidative stress. No study has determined whether there are racial differences in postprandial oxidative stress with and without a preceding bout of acute exercise.


To investigate the impact of acute exercise on blood oxidative- stress biomarkers, triglycerides (TAG), and glucose in African American (AA) and White (W) women.


10 AA (age 29 ± 3 yr, body-mass index [BMI] 31 ± 3 kg/m2) and 10 W (age 30 ± 2 yr, BMI 30 ± 3 kg/m2) women consumed a meal of 1.2 g of fat and carbohydrate and 0.25 g of protein per kilogram body mass, on 2 occasions—with and without a session of aerobic exercise 15 min preceding the meal (45 min cycling at 65% heart-rate reserve)—in a random-order crossover design. Blood samples were collected premeal (fasted), and at 1, 2, 4, and 6 hr postmeal and assayed for TAG, glucose, xanthine oxidase activity, hydrogen peroxide (H2O2), and malondialdehyde (MDA). Area under the curve (AUC) was calculated for each variable.


AUC was lower for AA compared with W for both the exercise and the no exercise conditions for H2O2, MDA, and TAG (p < .01). However, acute exercise had no effect on decreasing the AUC for any variable in either AA or W women (p > .05).


Postprandial lipemia and oxidative stress are lower in AA than in W overweight/obese women. However, acute exercise, performed at the intensity and duration in the current study, does not influence postprandial lipemia or oxidative stress in AA or W women.

The authors are with the Cardiorespiratory/Metabolic Laboratory, University of Memphis, Memphis, TN 38152.