Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Exercise and metformin may prevent or delay Type 2 diabetes by, in part, raising the capacity for fat oxidation. Whether the addition of metformin has additive effects on fat oxidation during and after exercise is unknown. Therefore, the purpose of this study was to evaluate the effect of metformin on substrate oxidation during and after exercise. Using a double-blind, counter-balanced crossover design, substrate oxidation was assessed by indirect calorimetry in 15 individuals taking metformin (2,000 mg/d) and placebo for 8–10 d. Measurements were made during cycle exercise at 5 submaximal cycle workloads, starting at 30% peak work (Wpeak) and increasing by 10% every 8 min to 70% Wpeak. Substrate oxidation was also measured for 50 min postexercise. Differences between conditions were assessed using analysis of variance with repeated measures, and values are reported as M ± SE. During exercise, fat oxidation (0.19 ± 0.03 vs. 0.15 ± 0.01 g/min, p < .01) and percentage of energy from fat (32% ± 3% vs. 28% ± 3%, p < .01) were higher with metformin than with placebo. Postexercise, metformin slightly lowered fat oxidation (0.12 ± 0.02 to 0.10 ± 0.02 g/min, p < .01) compared with placebo. There was an inverse relationship between postexercise fat oxidation and the rate of fat oxidation during exercise (r = –.68, p < .05). In healthy individuals, metformin has opposing actions on fat oxidation during and after exercise. Whether the same effects are evident in insulin-resistant individuals remains to be determined.

The authors are with the Dept. of Kinesiology, University of Massachusetts, Amherst.