Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

This study determined whether disrupted glucose and insulin responses to an oral glucose-tolerance test (OGTT) induced by eccentric exercise were attenuated after a repeated bout. Female participants (n = 10, age 24.7 ± 3.0 yr, body mass 64.9 ± 7.4 kg, height 1.67 ± 0.02 m, body fat 29% ± 2%) performed 2 bouts of downhill running (DTR 1 and DTR 2) separated by 14 d. OGTTs were administered at baseline and 48 hr after DTR 1 and DTR 2. Maximum voluntary isometric quadriceps torque (MVC), subjective soreness (100-mm visual analog scale), and serum creatine kinase (CK) were assessed pre-, post-, and 48 hr post-DTR 1 and DTR 2. Insulin and glucose area under the curve (38% ± 8% and 21% ± 5% increase, respectively) and peak insulin (44.1 ± 5.1 vs. 31.6 ± 4.0 μU/ml) and glucose (6.5 ± 0.4 vs. 5.5 ± 0.4 mmol/L) were elevated after DTR 1, with no increase above baseline 48 hr after DTR 2. MVC remained reduced by 9% ± 3% 48 hr after DTR 1, recovering back to baseline 48 hr after DTR 2. Soreness was elevated to a greater degree 48 hr after DTR 1 (48 ± 6 vs. 13 ± 3 mm), with a tendency for greater CK responses 48 hr after DTR 1 (813 ± 365 vs. 163 ± 43 U/L, p = .08). A novel bout of eccentric exercise confers protective effects, with subsequent bouts failing to elicit disruptions in glucose and insulin homeostasis.

Green is with the Dept. of Kinesiology and Health Promotion, Troy University, Troy, AL. Doyle, Ingalls, Rupp, and Corona are with the Dept. of Kinesiology and Health, and Benardot, the Div. of Nutrition, Georgia State University, Atlanta, GA.