Lack of Effect of a High-Calorie Dextrose or Maltodextrin Meal on Postprandial Oxidative Stress in Healthy Young Men

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Background:

Carbohydrate powder in the form of maltodextrin is widely used by athletes for postexercise glycogen resynthesis. There is some concern that such a practice may be associated with a postprandial rise in reactive oxygen and nitrogen species production and subsequent oxidation of macromolecules. This is largely supported by findings of increased oxidative-stress biomarkers and associated endothelial dysfunction after intake of dextrose.

Purpose:

To compare the effects of isocaloric dextrose and maltodextrin meals on blood glucose, triglycerides (TAG), and oxidative-stress biomarkers in a sample of young healthy men.

Methods:

10 men consumed isocaloric dextrose and maltodextrin powder drinks (2.25 g/kg) in a random-order, crossover design. Blood samples were collected premeal (fasting) and at 1, 2, 4, and 6 hr postmeal and assayed for glucose, TAG, malondialdehyde, hydrogen peroxide, nitrate/nitrite, and Trolox-equivalent antioxidant capacity.

Results:

Significant meal effects were noted for glucose total area under the curve (p = .004), with values higher for the dextrose meal. No other statistically significant meal effects were noted (p > .05). With respect to the 2 (meal) × 5 (time) ANOVA, no significant interaction, time, or meal effects were noted for any variable (p > .05), with the exception of glucose, for which a main effect for both meal (p < .0001) and time (p = .0002) was noted.

Conclusions:

These data indicate that carbohydrate meals, consumed as either dextrose or maltodextrin, pose little postprandial oxidative insult to young, healthy men. As such, there should be minimal concern over such feedings, even at high dosages, assuming adequate glucose metabolism.

The authors are with the Cardiorespiratory/Metabolic Laboratory, University of Memphis, Memphis, TN.