Techniques for Undertaking Dual-Energy X-Ray Absorptiometry Whole-Body Scans to Estimate Body Composition in Tall and/or Broad Subjects

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Dual-energy X-ray absorptiometry (DXA) is becoming a popular tool to measure body composition, owing to its ease of operation and comprehensive analysis. However, some people, especially athletes, are taller and/or broader than the active scanning area of the DXA bed and must be scanned in sections. The aim of this study was to investigate the reliability of DXA measures of whole-body composition summed from 2 or 3 partial scans. Physically active young adults (15 women, 15 men) underwent 1 whole-body and 4 partial DXA scans in a single testing session under standardized conditions. The partial scanning areas were head, whole body from the bottom of the chin down, and right and left sides of the body. Body-composition estimates from whole body were compared with estimates from summed partial scans to simulate different techniques to accommodate tall and/or broad subjects relative to the whole-body scan. Magnitudes of differences in the estimates were assessed by standardization. In simulating tall subjects, summation of partial scans that included the head scan overestimated whole-body composition by ~3 kg of lean mass and ~1 kg of fat mass, with substantial technical error of measurement. In simulating broad subjects, summation of right and left body scans produced no substantial differences in body composition than those of the whole-body scan. Summing partial DXA scans provides accurate body-composition estimates for broad subjects, but other strategies are needed to accommodate tall subjects.

Nana and Burke are with AIS Sports Nutrition, Australian Institute of Sport, Canberra, ACT, Australia. Slater is with the School of Health and Sports Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia. Hopkins is with Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.