The Effects of Chronic Sodium Bicarbonate Ingestion and Interval Training in Highly Trained Rowers

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Recent research has reported performance improvements after chronic NaHCO3 ingestion in conjunction with high-intensity interval training (HIT) in moderately trained athletes. The purpose of the current study was to determine the effects of altering plasma H+ concentration during HIT through NaHCO3 ingestion over 4 wk (2 HIT sessions/wk) in 12 Australian representative rowers (M ± SD; age 22 ± 3 yr, mass 76.4 ± 4.2 kg, VO2peak 65.50 ± 2.74 ml · kg−1 · min−1). Baseline testing included a 2,000-m time trial and an incremental exercise test. After baseline testing, rowers were allocated to either a chronic NaHCO3 (ALK) or placebo (PLA) group. Starting 90 min before each HIT session, subjects ingested a 0.3-g/kg body mass dose of NaHCO3 or a placebo substance. Fingertip blood samples were taken throughout the study to analyze bicarbonate and pH levels. The ALK group did not produce any additional improvements in 2,000-m rowing performance time compared with PLA (p > .05). Magnitude-based inferential analysis indicated an unclear or trivial effect on 2,000-m power, 2,000-m time, peak power output, and power at 4 mmol/L lactate threshold in the ALK group compared with the PLA group. Although there was no difference between groups, during the study there was a significant mean (± SD) 2,000-m power improvement in both the ALK and PLA groups of 17.8 ± 14.5 and 15.2 ± 18.3 W, respectively. In conclusion, despite overall improvements in rowing performance after 4 wk of HIT, the addition of chronic NaHCO3 supplementation during the training period did not significantly enhance performance further.

Driller is with the Dept. of Physiology, Australian Institute of Sport, Canberra, Australia. Gregory is with the Sports Performance Unit, Tasmanian Institute of Sport, Launceston, Australia. Williams and Fell are with the Sport Performance Optimisation Research Team, School of Human Life Sciences, University of Tasmania, Launceston, Australia.