Effect of Exercise Modality and Intensity on Postexercise Interleukin-6 and Hepcidin Levels

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The effect of exercise modality and intensity on Interleukin-6 (IL-6), iron status, and hepcidin levels was investigated. Ten trained male triathletes performed 4 exercise trials including low-intensity continuous running (L-R), low-intensity continuous cycling (L-C), high-intensity interval running (H-R), and high-intensity interval cycling (H-C). Both L-R and L-C consisted of 40 min continuous exercise performed at 65% of peak running velocity (vVO2peak) and cycling power output (pVO2peak), while H-R and H-C consisted of 8 × 3-min intervals performed at 85% vVO2peak and pVO2peak. Venous blood samples were drawn pre-, post-, and 3 hr postexercise. Significant increases in postexercise IL-6 were seen within each trial (p < .05) and were significantly greater in H-R than L-R (p < .05). Hepcidin levels were significantly elevated at 3 hr postexercise within each trial (p < .05). Serum iron levels were significantly elevated (p < .05) immediately postexercise in all trials except L-C. These results suggest that, regardless of exercise mode or intensity, postexercise increases in IL-6 may be expected, likely influencing a subsequent elevation in hepcidin. Regardless, the lack of change in postexercise serum iron levels in L-C may indicate that reduced hemolysis occurs during weight-supported, low-intensity activity.

Sim, Dawson, Landers, and Peeling are with the School of Sport Science, Exercise and Health, University of Western Australia, Crawley, WA, Australia. Swinkels and Tjalsma are with the Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands. Trinder is with the School of Medicine and Pharmacology, University of Western Australia, Fremantle, WA, Australia.