The Measurement and Interpretation of Dietary Protein Distribution During a Rugby Preseason

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Evidence suggests that increasing protein distribution may be desirable to promote muscle protein synthesis (MPS) in combination with resistance exercise. However, there is a threshold above which additional protein consumption has limited benefit for MPS and may promote protein loss due to increased oxidation. This study aimed to measure daily protein intake and protein distribution in a cohort of rugby players. Twenty-five developing elite rugby union athletes (20.5 ± 2.3 years, 100.2 ± 13.3 kg, 184.4 ± 7.4 cm) were assessed at the start and end of a rugby preseason. Using a 7-day food diary the reported daily protein intake was 2.2 ± 0.7 g·kg·day-1 which exceeds daily recommendations. The reported carbohydrate intake was 3.6 ± 1.3 g·kg·day-1 which may reflect a suboptimal intake or dietary underreporting. In general, the rugby athletes were regularly consuming more than 20 g of protein; 3.8 ± 0.9 times per day (68 ± 18% of eating occasions). In addition to documenting current dietary intakes, an excess protein estimation score was calculated to determine how frequently the rugby athletes consumed protein above a known effective dose with a margin of error. 2.0 ± 0.9 eating occasions contained protein in excess of doses (20 g) known to promote MPS. Therefore, it is currently unclear whether the consumption of regular large doses of protein will benefit rugby athletes via increasing protein distribution, or whether high protein intakes may have unintended effects including a reduction in carbohydrate and/or energy intake.

MacKenzie and King are with the Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia. Slater is with the School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Australia. Byrne is with the Bond Institute of Health and Sport, Bond University, Gold Coast, Australia.

Address author correspondence to Neil King at n.king@qut.edu.au.
International Journal of Sport Nutrition and Exercise Metabolism
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 96 96 40
Full Text Views 8 8 5
PDF Downloads 10 10 7
Altmetric Badge
PubMed
Google Scholar