Metabolism and Whole-Body Fat Oxidation Following Postexercise Carbohydrate or Protein Intake

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Purpose: This study investigated how postexercise intake of placebo (PLA), protein (PRO), or carbohydrate (CHO) affected fat oxidation (FO) and metabolic parameters during recovery and subsequent exercise. Methods: In a cross-over design, 12 moderately trained women (VO2max 45 ± 6 ml·min−1·kg−1) performed three days of testing. A 23-min control (CON) incremental FO bike test (30–80% VO2max) was followed by 60 min exercise at 75% VO2max. Immediately postexercise, subjects ingested PLA, 20 g PRO, or 40 g CHO followed by a second FO bike test 2 h later. Results: Maximal fat oxidation (MFO) and the intensity at which MFO occurs (Fatmax) increased at the second FO test compared to the first following all three postexercise drinks (MFO for CON = 0.28 ± 0.08, PLA = 0.57 ± 0.13, PRO = 0.52 ± 0.08, CHO = 0.44 ± 0.12 g fat·min−1; Fatmax for CON = 41 ± 7, PLA = 54 ± 4, PRO = 55 ± 6, CHO = 50 ± 8 %VO2max, p < 0.01 for all values compared to CON). Resting FO, MFO, and Fatmax were not significantly different between PLA and PRO, but lower for CHO. PRO and CHO increased insulin levels at 1 h postexercise, though both glucose and insulin were equal with PLA at 2 h postexercise. Increased postexercise ketone levels only occurred with PLA. Conclusion: Protein supplementation immediately postexercise did not affect the doubling in whole body fat oxidation seen during a subsequent exercise trial 2 h later. Neither did it affect resting fat oxidation during the postexercise period despite increased insulin levels and attenuated ketosis. Carbohydrate intake dampened the increase in fat oxidation during the second test, though a significant increase was still observed compared to the first test.

Andersson-Hall is with the Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. Andersson-Hall and Madsen are with the Dept. of Public Health, Arhus University, Aarhus, Denmark. Pettersson, Edin, and Madsen are with the Dept. of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden. Pedersen and Malmodin are with the Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden.

Address author correspondence to Ulrika Andersson-Hall at ulrika.andersson.hall@gu.se.
  • Achten, J., & Jeukendrup, A.E. (2003). The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation. Journal of Sports Sciences, 21(12), 1017–1025. doi:10.1080/02640410310001641403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersson Hall, U., Edin, F., Pedersen, A., & Madsen, K. (2016). Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes. Applied Physiology, Nutrition, and Metabilism, 41(4), 430–437. doi:10.1139/apnm-2015-0452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Badenhorst, C.E., Dawson, B., Cox, G.R., Laarakkers, C.M., Swinkels, D.W., & Peeling, P. (2015). Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. European Journal of Applied Physiology, 115(12), 2521–2530. PubMed doi:10.1007/s00421-015-3252-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlett, J.D., Hawley, J.A., & Morton, J.P. (2015). Carbohydrate availability and exercise training adaptation: Too much of a good thing? European Journal of Sport Science, 15(1), 3–12. doi:10.1080/17461391.2014.920926

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blomstrand, E., & Saltin, B. (2001). BCAA intake affects protein metabolism in muscle after but not during exercise in humans. American Journal of Physiology, Endocrinology and Metabolism, 281(2), 365–374. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92–98. PubMed

    • Search Google Scholar
    • Export Citation
  • Buckley, J.D., Thomson, R.L., Coates, A.M., Howe, P.R., DeNichilo, M.O., & Rowney, M.K. (2010). Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. Journal of Science and Medicine in Sport, 13(1), 178–181. PubMed doi:10.1016/j.jsams.2008.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, P.J., Carlson, M.G., Hill, J.O., & Nurjhan, N. (2006). Regulation of free fatty acid metabolism by insulin in humans: Role of lipolysis and reesterification. American Journal of Physiology, 263(6), E1063–E1069. PubMed

    • Search Google Scholar
    • Export Citation
  • Close, G.L., Hamilton, D.L., Philp, A., Burke, L.M., & Morton, J.P. (2016). New strategies in sport nutrition to increase exercise performance. Free Radical Biology and Medicine, 98, 144–158. PubMed doi:10.1016/j.freeradbiomed.2016.01.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cochran, A.J., Myslik, F., MacInnis, M.J., Percival, M.E., Bishop, D., Tarnopolsky, M.A., & Gibala, M.J. (2015). Manipulating carbohydrate availability between twice-daily sessions of high-intensity interval training over 2 weeks improves time-trial performance. International Journal of Sport Nutrition and Exercise Metabolism, 25(5), 463–470. doi:10.1123/ijsnem.2014-0263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruzat, V.F., Krause, M., & Newsholme, P. (2014). Amino acid supplementation and impact on immune function in the context of exercise. Journal of the international Society of Sports Nutrition, 11(1), 61. PubMed doi:10.1186/s12970-014-0061-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dandanell, S., Husted, K., Amdisen, S., Vigelsø, A., Dela, F., Larsen, S., & Helge, J.W. (2017). Influence of maximal fat oxidation on long-term weight loss maintenance in humans. Journal of Applied Physiology, 123(1), 267–274. doi:10.1152/japplphysiol.00270.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in H-1 NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290. PubMed doi:10.1021/ac051632c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Floyd, J.C., Jr., Fajans, S.S., Conn, J.W., Knopf, R.F., & Rull, J. (1966). Stimulation of insulin secretion by amino acids. Journal of Clinical Investigation, 45(9), 1487–1502. doi:10.1172/JCI105456

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frayn, K.N. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 55(2), 628–634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galgani, J.E., Moro, C., & Ravussin, E. (2008). Metabolic flexibility and insulin resistance. American Journal of Physiology: Endocrinology and Metabolism, 295(5), E1009–E1017. PubMed

    • Search Google Scholar
    • Export Citation
  • Gavin, J.P., Myers, S.D., & Willems, M.E. (2015). The effect of glycogen reduction on cardiorespiratory and metabolic responses during downhill running. European Journal of Applied Physiology, 115(5), 1125–1133. PubMed doi:10.1007/s00421-014-3094-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleeson, M. (2016). Immunological aspects of sport nutrition. Immunology & Cell Biology, 94(2), 117–123. PubMed doi:10.1038/icb.2015.109

  • Goodpaster, B.H., & Sparks, L.M. (2017). Metabolic flexibility in health and disease. Cell Metabolism, 25(5), 1027–1036. PubMed doi:10.1016/j.cmet.2017.04.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groop, L.C., Bonadonna, R.C., Simonson, D.C., Petrides, A.S., Shank, M., & DeFronzo, R.A. (1992). Effect of insulin on oxidative and nonoxidative pathways of free fatty acid metabolism in human obesity. American Journal of Physiology, 263(1 Pt 1), E79–E84. PubMed

    • Search Google Scholar
    • Export Citation
  • Hansen, A.K., Fischer, C.P., Plomgaard, P., Andersen, J.L., Saltin, B., & Pedersen, B.K. (2005). Skeletal muscle adaptation: Training twice every second day vs. training once daily. Journal of Applied Physiology, 98(1), 93–99. PubMed doi:10.1152/japplphysiol.00163.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Impey, S.G., Smith, D., Robinson, A.L., Owens, D.J., Bartlett, J.D., Smith, K., … Morton, J.P. (2015). Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: Beneficial implications for training in carbohydrate-restricted states. Amino Acids, 47(2), 407–416. PubMed doi:10.1007/s00726-014-1876-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentjens, R., & Jeukendrup, A. (2003). Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine, 33(2), 117–144. PubMed doi:10.2165/00007256-200333020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerksick, C., Harvey, T., Stout, J., Campbell, B., Wilborn, C., Kreider, R., … Antonio, J. (2008). International Society of Sports Nutrition position stand: Nutrient timing. Journal of the International Society of Sports Nutrition, 5, 17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiens, B., Alsted, T.J., & Jeppesen, J. (2011). Factors regulating fat oxidation in human skeletal muscle. Obesity Reviews, 12(10), 852–858. doi:10.1111/j.1467-789X.2011.00898.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koeslag, J.H. (1982). Post-exercise ketosis and the hormone response to exercise: A review. Medicine & Science in Sports & Exercise, 14(5), 327–334. PubMed doi:10.1249/00005768-198205000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koeslag, J.H., Noakes, T.D., & Sloan, A.W. (1982). The effects of alanine, glucose and starch ingestion on the ketosis produced by exercise and by starvation. The Journal of Physiology, 325, 363–376. PubMed doi:10.1113/jphysiol.1982.sp014155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMurray, R.G., & Hackney, A.C. (2005). Interactions of metabolic hormones, adipose tissue and exercise. Sports Medicine, 35(5), 393–412. PubMed doi:10.2165/00007256-200535050-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mettler, S., Mitchell, N., & Tipton, K.D. (2010). Increased protein intake reduces lean body mass loss during weight loss in athletes. Medicine & Science in Sports & Exercise, 42(2), 326–337. PubMed doi:10.1249/MSS.0b013e3181b2ef8e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, J.P., Robertson, C., Sutton, L., & MacLaren, D.P. (2010). Making the weight: A case study from professional boxing. International Journal of Sport Nutrition and Exercise Metabolism, 20(1), 80–85. PubMed doi:10.1123/ijsnem.20.1.80

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, S.L., Hattersley, J., Frost, G.S., Chambers, E.S., & Wallis, G.A. (2015). Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. Journal of Applied Physiology (1985), 118(11), 1415–1422. PubMed doi:10.1152/japplphysiol.00058.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rustad, P.I., Sailer, M., Cumming, K.T., Jeppesen, P.B., Kolnes, K.J., Sollie, O., … Jensen, J. (2016). Intake of protein plus carbohydrate during the first two hours after exhaustive cycling improves performance the following day. PLoS One, 11(4), e0153229. PubMed doi:10.1371/journal.pone.0153229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savorani, F., Tomasi, G., & Engelsen, S.B. (2010). Icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 202(2), 190–202. PubMed doi:10.1016/j.jmr.2009.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spriet, L.L. (2011). Metabolic regulation of fat use during exercise and in recovery. Paper presented at the Sports Nutrition: More Than Just Calories– Triggers for Adaptation. Nestlé Nutrition Institute Workshop, Kailua-Kona, Hawaii.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stich, V., de Glisezinski, I., Berlan, M., Bulow, J., Galitzky, J., Harant, I., … Crampes, F. (2000). Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise. Journal of Applied Physiology (1985), 88(4), 1277–1283. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stisen, A.B., Stougaard, O., Langfort, J., Helge, J.W., Sahlin, K., & Madsen, K. (2006). Maximal fat oxidation rates in endurance trained and untrained women. European Journal of Applied Physiology, 98(5), 497–506. PubMed doi:10.1007/s00421-006-0290-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, D.T., Erdman, K.A., & Burke, L.M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–528. PubMed doi:10.1016/j.jand.2015.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, G., Savorani, F., & Engelsen, S.B. (2011). Icoshift: An effective tool for the alignment of chromatographic data. Journal of Chromatography A, 1218(43), 7832–7840. PubMed doi:10.1016/j.chroma.2011.08.086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, L.J. (2013). Role of dietary protein in post-exercise muscle reconditioning. Nestle Nutrition Institute Workshop Series, 75, 73–83. PubMed

  • van Loon, L.J., Greenhaff, P.L., Constantin-Teodosiu, D., Saris, W.H., & Wagenmakers, A.J. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. Journal of Physiology, 536(Pt 1), 295–304. PubMed doi:10.1111/j.1469-7793.2001.00295.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, W.K., Paton, C.D., Garnham, A.P., Burke, L.M., Carey, A.L., & Hawley, J.A. (2008). Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Journal of Applied Physiology(1985), 105(5), 1462–1470. doi:10.1152/japplphysiol.90882.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 195 195 36
Full Text Views 32 32 6
PDF Downloads 12 12 1