Effect of Preexercise Ingestion of Modified Amylomaize Starch on Glycemic Response While Cycling

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Rachel B. ParksIowa State University

Search for other papers by Rachel B. Parks in
Current site
Google Scholar
PubMed
Close
*
,
Hector F. AngusIowa State University

Search for other papers by Hector F. Angus in
Current site
Google Scholar
PubMed
Close
*
,
Douglas S. KingIowa State University

Search for other papers by Douglas S. King in
Current site
Google Scholar
PubMed
Close
*
, and
Rick L. SharpIowa State University

Search for other papers by Rick L. Sharp in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Amylomaize-7 is classified as a resistant corn starch and is 68% digestible. When modified by partial hydrolysis in ethanol and hydrochloric acid its digestibility is 92%, yet retains its low glycemic and insulinemic properties. The purpose of this study was to characterize the metabolic response when modified amylomaize-7 or dextrose is consumed in the hour before exercise, and to compare the effect on performance of a brief high-intensity cycling trial. Ten male, trained cyclists were given 1 g/kg body mass of dextrose (DEX) or modified amylomaize-7 (AMY-7) or a flavored water placebo (PL) 45 min prior to exercise on a cycle ergometer. A 15-min ride at 60% Wmax was immediately followed by a self-paced time trial (TT) equivalent to 15 min at 80% Wmax. When cyclists consumed DEX, mean serum glucose concentration increased by 3.3 ± 2.1 mmol/L before exercise, compared to stable serum glucose observed for AMY-7 or PL. Glucose concentrations returned to baseline by pre-TT in all treatments. However, the mean post-TT glucose concentration of the DEX group was significantly lower than baseline, AMY-7, or PL. Serum insulin concentration increased nine-fold from baseline to preexercise in the DEX trial, whereas PL or AMY-7 remained unchanged. Time required to complete the performance trial was not significantly different between DEX, AMY-7 or PL. Preexercise ingestion of modified amylomaize-7 compared to dextrose resulted in a more stable serum glucose concentration, but did not offer a performance advantage in this high-intensity cycling trial.

Parks, Angus, King, and Sharp are with the Dept. of Kinesiology, Iowa State University, Ames, IA.

Address author correspondence to Rachel B. Parks at rachel.parks@bjc.org.
  • Collapse
  • Expand
  • Baur, D.A., Vargas, F.C.S., Bach, C.W., Garvey, J.A., & Ormsbee, M.J. (2016). Slow-absorbing modified starch on prolonged cycling increase fat oxidation and gastrointestinal distress without changing performance. Nutrients, 8(7), 392. doi:10.3390/nu8070392

    • Search Google Scholar
    • Export Citation
  • Behall, K.M., Scholfield, D.J., & Canary, J. (1988). Effect of starch structure on glucose and insulin responses in adults. American Journal of Clinical Nutrition, 47(3), 428432. PubMed

    • Search Google Scholar
    • Export Citation
  • Benardot, D., Clark, K., & Manore, M.M. (2016). American College of Sports Medicine position stand: Nutrition and athletic performance. Medicine & Science in Sports & Exercise, 48(3), 543568. doi:10.1249/MSS.0000000000000852

    • Search Google Scholar
    • Export Citation
  • Bjorck, I., Granfeldt, Y., Liljeberg, H., Tovar, J., & Asp, N.G. (1994). Food properties affecting the digestion and absorption of carbohydrates. American Journal of Clinical Nutrition, 59(3), 699S705S.

    • Search Google Scholar
    • Export Citation
  • Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2-3), 9298.

    • Search Google Scholar
    • Export Citation
  • Coggan, A.R., & Coyle, E.F. (1987). Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. Journal of Applied Physiology, 63(6), 23882395. PubMed

    • Search Google Scholar
    • Export Citation
  • Defronzo, R.A., Ferrannini, E., Sato, Y., & Felig, P. (1981). Synergistic interaction between exercise and insulin on peripheral glucose uptake. Journal of Clinical Investigation, 68(6), 14681474. PubMed doi:10.1172/JCI110399

    • Search Google Scholar
    • Export Citation
  • Ehrman, J.K. (2010). ACSM’s resource manual for guidelines for exercise testing and prescription (6th ed.). Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • Foster, C., Costill, D.L., & Fink, W.J. (1979). Effects of pre-exercise feedings on endurance performance. Medicine & Science in Sports & Exercise, 11(1), 15. PubMed

    • Search Google Scholar
    • Export Citation
  • Fox, J.D., & Robyt, J.F. (1992). Modification of starch granules by hydrolysis with hydrochloric acid in various alcohols, and the formation of new kinds of limit dextrins. Carbohydrate Research, 227, 163170. doi:10.1016/0008-6215(92)85068-B

    • Search Google Scholar
    • Export Citation
  • Goodpaster, B.H., Costill, D.L., Fink, W.J., Trappe, T.A., Jozsi, A.C., Starling, R.D., & Trappe, S.W. (1996). The effects of pre-exercise starch ingestion on endurance performance. International Journal of Sports Medicine, 17(5), 366372. PubMed doi:10.1055/s-2007-972862

    • Search Google Scholar
    • Export Citation
  • Granfeldt, Y., Drews, A., & Bjorck, I. (1995). Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans. Journal of Nutrition, 125(3), 459465. PubMed

    • Search Google Scholar
    • Export Citation
  • Guezennec, C.Y., Satabin, P., Duforez, F., Merino, D., Peronnet, F., & Koziet, J. (1989). Oxidation of corn starch, glucose, and fructose ingested before exercise. Medicine & Science in Sports & Exercise, 21(1), 4550. PubMed doi:10.1249/00005768-198902000-00009

    • Search Google Scholar
    • Export Citation
  • Hardy, C.J., & Rejeski, W.J. (1989). Not what, but how one feels-the measurement of affect during exercise. Journal of Sport & Exercise Psychology, 11(3), 304317. doi:10.1123/jsep.11.3.304

    • Search Google Scholar
    • Export Citation
  • Hargreaves, M., Costill, D.L., Fink, W.J., King, D.S., & Fielding, R.A. (1987). Effect of pre-exercise carbohydrate feedings on endurance cycling performance. Medicine & Science in Sports & Exercise, 19(1), 3336. PubMed doi:10.1249/00005768-198702000-00007

    • Search Google Scholar
    • Export Citation
  • Hepburn, D.A., Deary, I.J., Frier, B.M., Patrick, A.W., Quinn, J.D., & Fisher, B.M. (1991). Symptoms of acute insulin-induced hypoglycemia in humans with and without IDDM. Factor-analysis approach. Diabetes Care, 14(11), 949957. PubMed doi:10.2337/diacare.14.11.949

    • Search Google Scholar
    • Export Citation
  • Institute of Medicine. (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Retrieved from https://www.nal.usda.gov/sites/default/files/fnic_uploads//energy_full_report.pdf

    • Search Google Scholar
    • Export Citation
  • Ivy, J.L., Katz, A.L., Cutler, C.L., Sherman, W.M., & Coyle, E.F. (1988). Muscle glycogen synthesis after exercise-effect of time of carbohydrate ingestion. Journal of Applied Physiology, 64(4), 14801485. PubMed

    • Search Google Scholar
    • Export Citation
  • Jentjens, R., Cale, C., Gutch, C., & Jeukendrup, A.E. (2003). Effects of pre-exercise ingestion of differing amounts of carbohydrate on subsequent metabolism and cycling performance. European Journal of Applied Physiology, 88(4-5), 444452. PubMed doi:10.1007/s00421-002-0727-9

    • Search Google Scholar
    • Export Citation
  • Jentjens, R., & Jeukendrup, A.E. (2003). Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance. European Journal of Applied Physiology, 88(4-5), 459465. PubMed doi:10.1007/s00421-002-0729-7

    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Killer, S.C. (2010). The myths surrounding pre-exercise carbohydrate feeding. Annals of Nutrition & Metabolism, 57, 1825. PubMed doi:10.1159/000322698

    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., Saris, W.H.M., Brouns, F., & Kester, A.D.M. (1996). A new validated endurance performance test. Medicine & Science in Sports & Exercise, 28(2), 266270. PubMed doi:10.1097/00005768-199602000-00017

    • Search Google Scholar
    • Export Citation
  • Johannsen, N.M., & Sharp, R.L. (2007). Effect of preexercise ingestion of modified cornstarch on substrate oxidation during endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 17(3), 232243. PubMed doi:10.1123/ijsnem.17.3.232

    • Search Google Scholar
    • Export Citation
  • Jozsi, A.C., Trappe, T.A., Starling, R.D., Goodpaster, B., Trappe, S.W., Fink, W.J., & Costill, D.L. (1996). The influence of starch structure on glycogen resynthesis and subsequent cycling performance. International Journal of Sports Medicine, 17(5), 373378. doi:10.1055/s-2007-972863

    • Search Google Scholar
    • Export Citation
  • Keller, K., & Schwarzkopf, R. (1984). Preexercise snacks may decrease exercise performance. The Physician and Sportsmedicine, 12(4), 8991. doi:10.1080/00913847.1984.11701825

    • Search Google Scholar
    • Export Citation
  • Marmy-Conus, N., Fabris, S., Proietto, J., & Hargreaves, M. (1996). Preexercise glucose ingestion and glucose kinetics during exercise. Journal of Applied Physiology, 81(2), 853857.

    • Search Google Scholar
    • Export Citation
  • Montain, S.J., Hopper, M.K., Coggan, A.R., & Coyle, E.F. (1991). Exercise metabolism at different time intervals after a meal. Journal of Applied Physiology, 70(2), 882888. PubMed

    • Search Google Scholar
    • Export Citation
  • Moore, L.J.S., Midgley, A.W., Thurlow, S., Thomas, G., & Mc Naughton, L.R. (2010). Effect of the glycaemic index of a pre-exercise meal on metabolism and cycling time trial performance. Journal of Science and Medicine in Sport, 13(1), 182188. PubMed doi:10.1016/j.jsams.2008.11.006

    • Search Google Scholar
    • Export Citation
  • Moseley, L., Lancaster, G.I., & Jeukendrup, A.E. (2003). Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. European Journal of Applied Physiology, 88(4-5), 453458. PubMed doi:10.1007/s00421-002-0728-8

    • Search Google Scholar
    • Export Citation
  • Roberts, M.D., Lockwood, C., Dalbo, V.J., Volek, J., & Kerksick, C.M. (2011). Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic reponses to prolonged exercise in trained cyclists. Nutrition, 27(6), 659665. PubMed doi:10.1016/j.nut.2010.07.008

    • Search Google Scholar
    • Export Citation
  • Seifert, J.G., Paul, G.L., Eddy, D.E., & Murray, R. (1994). Glycemic and insulinemic response to preexercise carbohydrate feedings. International Journal of Sport Nutrition, 4(1), 4653. PubMed doi:10.1123/ijsn.4.1.46

    • Search Google Scholar
    • Export Citation
  • Severijnen, C., Abrahamse, E., van der Beek, E.M., Buco, A., van de Heijning, B.J.M., van Laere, K., & Bouritius, H. (2007). Sterilization in a liquid of a specific starch makes it slowly digestible in vitro and low glycemic in rats. Journal of Nutrition, 137(10), 22022207. PubMed

    • Search Google Scholar
    • Export Citation
  • Sharp, R.L., Robyt, J.F., & Kaplan, M.L. (1997). U.S. Patent No. 5695803. Iowa State University.

  • Short, K.R., Sheffield-Moore, M., & Costill, D.L. (1997). Glycemic and insulinemic responses to multiple preexercise carbohydrate feedings. International Journal of Sport Nutrition, 7(2), 128137. PubMed doi:10.1123/ijsn.7.2.128

    • Search Google Scholar
    • Export Citation
  • Svebak, S., & Murgatroyd, S. (1985). Metamotivational dominance-a multimethod validation of reversal theory constructs. Journal of Personality and Social Psychology, 48(1), 107116. doi:10.1037/0022-3514.48.1.107

    • Search Google Scholar
    • Export Citation
  • Wright, D.A., Sherman, W.M., & Dernbach, A.R. (1991). Carbohydrate feedings before, during, or in combination improve cycling endurance performance. Journal of Applied Physiology, 71(3), 10821088. PubMed

    • Search Google Scholar
    • Export Citation
  • Zhou, X.H., & Kaplan, M.L. (1997). Soluble amylose cornstarch is more digestible than soluble amylopectin potato starch in rats. Journal of Nutrition, 127(7), 13491356. PubMed

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2114 949 31
Full Text Views 36 1 0
PDF Downloads 30 3 0