Effect of Preexercise Ingestion of Modified Amylomaize Starch on Glycemic Response While Cycling

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Amylomaize-7 is classified as a resistant corn starch and is 68% digestible. When modified by partial hydrolysis in ethanol and hydrochloric acid its digestibility is 92%, yet retains its low glycemic and insulinemic properties. The purpose of this study was to characterize the metabolic response when modified amylomaize-7 or dextrose is consumed in the hour before exercise, and to compare the effect on performance of a brief high-intensity cycling trial. Ten male, trained cyclists were given 1 g/kg body mass of dextrose (DEX) or modified amylomaize-7 (AMY-7) or a flavored water placebo (PL) 45 min prior to exercise on a cycle ergometer. A 15-min ride at 60% Wmax was immediately followed by a self-paced time trial (TT) equivalent to 15 min at 80% Wmax. When cyclists consumed DEX, mean serum glucose concentration increased by 3.3 ± 2.1 mmol/L before exercise, compared to stable serum glucose observed for AMY-7 or PL. Glucose concentrations returned to baseline by pre-TT in all treatments. However, the mean post-TT glucose concentration of the DEX group was significantly lower than baseline, AMY-7, or PL. Serum insulin concentration increased nine-fold from baseline to preexercise in the DEX trial, whereas PL or AMY-7 remained unchanged. Time required to complete the performance trial was not significantly different between DEX, AMY-7 or PL. Preexercise ingestion of modified amylomaize-7 compared to dextrose resulted in a more stable serum glucose concentration, but did not offer a performance advantage in this high-intensity cycling trial.

Parks, Angus, King, and Sharp are with the Dept. of Kinesiology, Iowa State University, Ames, IA.

Address author correspondence to Rachel B. Parks at rachel.parks@bjc.org.
  • Baur, D.A., Vargas, F.C.S., Bach, C.W., Garvey, J.A., & Ormsbee, M.J. (2016). Slow-absorbing modified starch on prolonged cycling increase fat oxidation and gastrointestinal distress without changing performance. Nutrients, 8(7), 392. doi:10.3390/nu8070392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behall, K.M., Scholfield, D.J., & Canary, J. (1988). Effect of starch structure on glucose and insulin responses in adults. American Journal of Clinical Nutrition, 47(3), 428–432. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benardot, D., Clark, K., & Manore, M.M. (2016). American College of Sports Medicine position stand: Nutrition and athletic performance. Medicine & Science in Sports & Exercise, 48(3), 543–568. doi:10.1249/MSS.0000000000000852

    • Search Google Scholar
    • Export Citation
  • Bjorck, I., Granfeldt, Y., Liljeberg, H., Tovar, J., & Asp, N.G. (1994). Food properties affecting the digestion and absorption of carbohydrates. American Journal of Clinical Nutrition, 59(3), 699S–705S.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2-3), 92–98.

    • Search Google Scholar
    • Export Citation
  • Coggan, A.R., & Coyle, E.F. (1987). Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. Journal of Applied Physiology, 63(6), 2388–2395. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Defronzo, R.A., Ferrannini, E., Sato, Y., & Felig, P. (1981). Synergistic interaction between exercise and insulin on peripheral glucose uptake. Journal of Clinical Investigation, 68(6), 1468–1474. PubMed doi:10.1172/JCI110399

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrman, J.K. (2010). ACSM’s resource manual for guidelines for exercise testing and prescription (6th ed.). Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • Foster, C., Costill, D.L., & Fink, W.J. (1979). Effects of pre-exercise feedings on endurance performance. Medicine & Science in Sports & Exercise, 11(1), 1–5. PubMed

    • Search Google Scholar
    • Export Citation
  • Fox, J.D., & Robyt, J.F. (1992). Modification of starch granules by hydrolysis with hydrochloric acid in various alcohols, and the formation of new kinds of limit dextrins. Carbohydrate Research, 227, 163–170. doi:10.1016/0008-6215(92)85068-B

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodpaster, B.H., Costill, D.L., Fink, W.J., Trappe, T.A., Jozsi, A.C., Starling, R.D., & Trappe, S.W. (1996). The effects of pre-exercise starch ingestion on endurance performance. International Journal of Sports Medicine, 17(5), 366–372. PubMed doi:10.1055/s-2007-972862

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Granfeldt, Y., Drews, A., & Bjorck, I. (1995). Arepas made from high amylose corn flour produce favorably low glucose and insulin responses in healthy humans. Journal of Nutrition, 125(3), 459–465. PubMed

    • Search Google Scholar
    • Export Citation
  • Guezennec, C.Y., Satabin, P., Duforez, F., Merino, D., Peronnet, F., & Koziet, J. (1989). Oxidation of corn starch, glucose, and fructose ingested before exercise. Medicine & Science in Sports & Exercise, 21(1), 45–50. PubMed doi:10.1249/00005768-198902000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardy, C.J., & Rejeski, W.J. (1989). Not what, but how one feels-the measurement of affect during exercise. Journal of Sport & Exercise Psychology, 11(3), 304–317. doi:10.1123/jsep.11.3.304

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, M., Costill, D.L., Fink, W.J., King, D.S., & Fielding, R.A. (1987). Effect of pre-exercise carbohydrate feedings on endurance cycling performance. Medicine & Science in Sports & Exercise, 19(1), 33–36. PubMed doi:10.1249/00005768-198702000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hepburn, D.A., Deary, I.J., Frier, B.M., Patrick, A.W., Quinn, J.D., & Fisher, B.M. (1991). Symptoms of acute insulin-induced hypoglycemia in humans with and without IDDM. Factor-analysis approach. Diabetes Care, 14(11), 949–957. PubMed doi:10.2337/diacare.14.11.949

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Institute of Medicine. (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Retrieved from https://www.nal.usda.gov/sites/default/files/fnic_uploads//energy_full_report.pdf

    • Export Citation
  • Ivy, J.L., Katz, A.L., Cutler, C.L., Sherman, W.M., & Coyle, E.F. (1988). Muscle glycogen synthesis after exercise-effect of time of carbohydrate ingestion. Journal of Applied Physiology, 64(4), 1480–1485. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentjens, R., Cale, C., Gutch, C., & Jeukendrup, A.E. (2003). Effects of pre-exercise ingestion of differing amounts of carbohydrate on subsequent metabolism and cycling performance. European Journal of Applied Physiology, 88(4-5), 444–452. PubMed doi:10.1007/s00421-002-0727-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentjens, R., & Jeukendrup, A.E. (2003). Effects of pre-exercise ingestion of trehalose, galactose and glucose on subsequent metabolism and cycling performance. European Journal of Applied Physiology, 88(4-5), 459–465. PubMed doi:10.1007/s00421-002-0729-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Killer, S.C. (2010). The myths surrounding pre-exercise carbohydrate feeding. Annals of Nutrition & Metabolism, 57, 18–25. PubMed doi:10.1159/000322698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., Saris, W.H.M., Brouns, F., & Kester, A.D.M. (1996). A new validated endurance performance test. Medicine & Science in Sports & Exercise, 28(2), 266–270. PubMed doi:10.1097/00005768-199602000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johannsen, N.M., & Sharp, R.L. (2007). Effect of preexercise ingestion of modified cornstarch on substrate oxidation during endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 17(3), 232–243. PubMed doi:10.1123/ijsnem.17.3.232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jozsi, A.C., Trappe, T.A., Starling, R.D., Goodpaster, B., Trappe, S.W., Fink, W.J., & Costill, D.L. (1996). The influence of starch structure on glycogen resynthesis and subsequent cycling performance. International Journal of Sports Medicine, 17(5), 373–378. doi:10.1055/s-2007-972863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, K., & Schwarzkopf, R. (1984). Preexercise snacks may decrease exercise performance. The Physician and Sportsmedicine, 12(4), 89–91. doi:10.1080/00913847.1984.11701825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marmy-Conus, N., Fabris, S., Proietto, J., & Hargreaves, M. (1996). Preexercise glucose ingestion and glucose kinetics during exercise. Journal of Applied Physiology, 81(2), 853–857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montain, S.J., Hopper, M.K., Coggan, A.R., & Coyle, E.F. (1991). Exercise metabolism at different time intervals after a meal. Journal of Applied Physiology, 70(2), 882–888. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, L.J.S., Midgley, A.W., Thurlow, S., Thomas, G., & Mc Naughton, L.R. (2010). Effect of the glycaemic index of a pre-exercise meal on metabolism and cycling time trial performance. Journal of Science and Medicine in Sport, 13(1), 182–188. PubMed doi:10.1016/j.jsams.2008.11.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moseley, L., Lancaster, G.I., & Jeukendrup, A.E. (2003). Effects of timing of pre-exercise ingestion of carbohydrate on subsequent metabolism and cycling performance. European Journal of Applied Physiology, 88(4-5), 453–458. PubMed doi:10.1007/s00421-002-0728-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M.D., Lockwood, C., Dalbo, V.J., Volek, J., & Kerksick, C.M. (2011). Ingestion of a high-molecular-weight hydrothermally modified waxy maize starch alters metabolic reponses to prolonged exercise in trained cyclists. Nutrition, 27(6), 659–665. PubMed doi:10.1016/j.nut.2010.07.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, J.G., Paul, G.L., Eddy, D.E., & Murray, R. (1994). Glycemic and insulinemic response to preexercise carbohydrate feedings. International Journal of Sport Nutrition, 4(1), 46–53. PubMed doi:10.1123/ijsn.4.1.46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Severijnen, C., Abrahamse, E., van der Beek, E.M., Buco, A., van de Heijning, B.J.M., van Laere, K., & Bouritius, H. (2007). Sterilization in a liquid of a specific starch makes it slowly digestible in vitro and low glycemic in rats. Journal of Nutrition, 137(10), 2202–2207. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharp, R.L., Robyt, J.F., & Kaplan, M.L. (1997). U.S. Patent No. 5695803. Iowa State University.

  • Short, K.R., Sheffield-Moore, M., & Costill, D.L. (1997). Glycemic and insulinemic responses to multiple preexercise carbohydrate feedings. International Journal of Sport Nutrition, 7(2), 128–137. PubMed doi:10.1123/ijsn.7.2.128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svebak, S., & Murgatroyd, S. (1985). Metamotivational dominance-a multimethod validation of reversal theory constructs. Journal of Personality and Social Psychology, 48(1), 107–116. doi:10.1037/0022-3514.48.1.107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D.A., Sherman, W.M., & Dernbach, A.R. (1991). Carbohydrate feedings before, during, or in combination improve cycling endurance performance. Journal of Applied Physiology, 71(3), 1082–1088. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X.H., & Kaplan, M.L. (1997). Soluble amylose cornstarch is more digestible than soluble amylopectin potato starch in rats. Journal of Nutrition, 127(7), 1349–1356. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 116 116 5
Full Text Views 17 17 2
PDF Downloads 8 8 3