Acute Ingestion of Caffeinated Chewing Gum Improves Repeated Sprint Performance of Team Sport Athletes With Low Habitual Caffeine Consumption

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Mark EvansDublin City University

Search for other papers by Mark Evans in
Current site
Google Scholar
PubMed
Close
*
,
Peter TierneyUniversity College Dublin

Search for other papers by Peter Tierney in
Current site
Google Scholar
PubMed
Close
*
,
Nicola GrayUniversity College Dublin

Search for other papers by Nicola Gray in
Current site
Google Scholar
PubMed
Close
*
,
Greg HaweUniversity College Dublin

Search for other papers by Greg Hawe in
Current site
Google Scholar
PubMed
Close
*
,
Maria MackenUniversity College Dublin

Search for other papers by Maria Macken in
Current site
Google Scholar
PubMed
Close
*
, and
Brendan EganDublin City University
University College Dublin

Search for other papers by Brendan Egan in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The effects of acute ingestion of caffeine on short-duration high-intensity performance are equivocal, while studies of novel modes of delivery and the efficacy of low doses of caffeine are warranted. The aims of the present study were to investigate the effect of acute ingestion of caffeinated chewing gum on repeated sprint performance (RSP) in team sport athletes, and whether habitual caffeine consumption alters the ergogenic effect, if any, on RSP. A total of 18 male team sport athletes undertook four RSP trials using a 40-m maximum shuttle run test, which incorporates 10 × 40-m sprints with 30 s between the start of each sprint. Each participant completed two familiarization sessions, followed by caffeine (CAF; caffeinated chewing gum; 200 mg caffeine) and placebo (PLA; noncaffeinated chewing gum) trials in a randomized, double-blind manner. RSP, assessed by sprint performance decrement (%), did not differ (p = .209; effect size = 0.16; N = 18) between CAF (5.00 ± 2.84%) and PLA (5.43 ± 2.68%). Secondary analysis revealed that low habitual caffeine consumers (<40 mg/day, n = 10) experienced an attenuation of sprint performance decrement during CAF relative to PLA (5.53 ± 3.12% vs. 6.53 ± 2.91%, respectively; p = .049; effect size =0.33); an effect not observed in moderate/high habitual caffeine consumers (>130 mg/day, n = 6; 3.98 ± 2.57% vs. 3.80 ± 1.79%, respectively; p = .684; effect size = 0.08). The data suggest that a low dose of caffeine in the form of caffeinated chewing gum attenuates the sprint performance decrement during RSP by team sport athletes with low, but not moderate-to-high, habitual consumption of caffeine.

Evans and Egan are with the School of Health & Human Performance, Dublin City University, Dublin, Ireland. Tierney, Gray, Hawe, Macken, and Egan are with the Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.

Address author correspondence to Brendan Egan at brendan.egan@dcu.ie.
  • Collapse
  • Expand
  • Aarons, L., Shargel, L., & Yu, A. (1981). Applied biopharmaceutics and pharmacokinetics. Journal of Clinical Pharmacy and Therapeutics, 6, 287288. doi:10.1111/j.1365-2710.1981.tb01006.x

    • Search Google Scholar
    • Export Citation
  • Andrade-Souza, V.A., Bertuzzi, R., de Araujo, G.G., Bishop, D., & Lima-Silva, A.E. (2015). Effects of isolated or combined carbohydrate and caffeine supplementation between 2 daily training sessions on soccer performance. Applied Physiology, Nutrition, and Metabolism, 40, 457463. PubMed doi:10.1139/apnm-2014-0268

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Astorino, T.A., & Roberson, D.W. (2010). Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. Journal of Strength and Conditioning Research, 24, 257265. PubMed doi:10.1519/JSC.0b013e3181c1f88a

    • Search Google Scholar
    • Export Citation
  • Beaumont, R., Cordery, P., Funnell, M., Mears, S., James, L., & Watson, P. (2017). Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. Journal of Sports Sciences, 35, 19201927. PubMed doi:10.1080/02640414.2016.1241421

    • Search Google Scholar
    • Export Citation
  • Bell, D.G., & McLellan, T.M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology, 93, 12271234. PubMed doi:10.1152/japplphysiol.00187.2002

    • Search Google Scholar
    • Export Citation
  • Bell, D.G., Mclellan, T.M., & Sabiston, C.M. (2002). Effect of ingesting caffeine and ephedrine on 10-km run performance. Medicine & Science in Sports & Exercise, 34, 344349. PubMed doi:10.1097/00005768-200202000-00024

    • Search Google Scholar
    • Export Citation
  • Burke, L.M. (2008). Caffeine and sports performance. Applied Physiology, Nutrition, and Metabolism, 33, 13191334. PubMed doi:10.1139/H08-130

    • Search Google Scholar
    • Export Citation
  • Currell, K., & Jeukendrup, A.E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38, 297316. PubMed doi:10.2165/00007256-200838040-00003

    • Search Google Scholar
    • Export Citation
  • Davis, J., & Green, J.M. (2009). Caffeine and anaerobic performance. Sports Medicine, 39, 813832. PubMed doi:10.2165/11317770-000000000-00000

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Muñoz, G., & Guerra-Muños, J. (2011). Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Applied Physiology, Nutrition, and Metabolism, 36, 555561. PubMed doi:10.1139/h11-052

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Portillo, J., Muñoz, G., Abián-Vicén, J., Gonzalez-Millán, C., & Muñoz-Guerra, J. (2013). Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids, 44, 15111519. PubMed doi:10.1007/s00726-013-1473-5

    • Search Google Scholar
    • Export Citation
  • Del Coso, J., Salinero, J.J., González-Millán, C., Abián-Vicén, J., & Pérez-González, B. (2012). Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. Journal of the International Society of Sports Nutrition, 9, 21. PubMed doi:10.1186/1550-2783-9-21

    • Search Google Scholar
    • Export Citation
  • Dodd, S., Brooks, E., Powers, S., & Tulley, R. (1991). The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. European Journal of Applied Physiology and Occupational Physiology, 62, 424429. PubMed doi:10.1007/BF00626615

    • Search Google Scholar
    • Export Citation
  • Fitt, E., Pell, D., & Cole, D. (2013). Assessing caffeine intake in the United Kingdom diet. Food Chemistry, 140, 421426. PubMed doi:10.1016/j.foodchem.2012.07.092

    • Search Google Scholar
    • Export Citation
  • Fitzsimons, M., Dawson, B., Ward, D., & Wilkinson, A. (1993). Cycling and running tests of repeated sprint ability. Australian Journal of Science and Medicine in Sport, 25, 82.

    • Search Google Scholar
    • Export Citation
  • Food and Drug Administration. (2010). Caffeine intake by the U.S. population (pp. 846). Silver Spring, MD: Author.

  • Fredholm, B.B. (1982). Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiologica Scandinavica, 115, 283286. PubMed doi:10.1111/j.1748-1716.1982.tb07078.x

    • Search Google Scholar
    • Export Citation
  • Fredholm, B.B., Bättig, K., Holmén, J., Nehlig, A., & Zvartau, E.E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51, 83133. PubMed

    • Search Google Scholar
    • Export Citation
  • Fulgoni, V.L., Keast, D.R., & Lieberman, H.R. (2015). Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. The American Journal of Clinical Nutrition, 101, 10811087. PubMed doi:10.3945/ajcn.113.080077

    • Search Google Scholar
    • Export Citation
  • Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability—Part I. Sports Medicine, 41, 673694. PubMed doi:10.2165/11590550-000000000-00000

    • Search Google Scholar
    • Export Citation
  • Glaister, M., Hauck, H., Abraham, C.S., Merry, K.L., Beaver, D., Woods, B., & McInnes, G. (2009). Familiarization, reliability, and comparability of a 40-m maximal shuttle run test. Journal of Sports Science & Medicine, 8, 77. PubMed

    • Search Google Scholar
    • Export Citation
  • Glaister, M., Howatson, G., Abraham, C.S., Lockey, R.A., Goodwin, J.E., Foley, P., & McInnes, G. (2008a). Caffeine supplementation and multiple sprint running performance. Medicine & Science in Sports & Exercise, 40, 18351840. doi:10.1249/MSS.0b013e31817a8ad2

    • Search Google Scholar
    • Export Citation
  • Glaister, M., Howatson, G., Pattison, J.R., & McInnes, G. (2008b). The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. Journal of Strength and Conditioning Research, 22, 15971601. doi:10.1519/JSC.0b013e318181ab80

    • Search Google Scholar
    • Export Citation
  • Goldstein, E.R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., … Graves, B.S. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition, 7, 5. PubMed doi:10.1186/1550-2783-7-5

    • Search Google Scholar
    • Export Citation
  • Gonçalves, L.S., de Salles Painelli, V., Yamaguchi, G., de Oliveira, L.F., Saunders, B., da Silva, R.P., … Gualano, B. (2017). Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. Journal of Applied Physiology, 123, 213220. doi:10.1152/japplphysiol.00260.2017

    • Search Google Scholar
    • Export Citation
  • Graham, T.E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports Medicine, 31, 785807. PubMed doi:10.2165/00007256-200131110-00002

    • Search Google Scholar
    • Export Citation
  • Irwin, C., Desbrow, B., Ellis, A., O’Keeffe, B., Grant, G., & Leveritt, M. (2011). Caffeine withdrawal and high-intensity endurance cycling performance. Journal of Sports Sciences, 29, 509515. PubMed doi:10.1080/02640414.2010.541480

    • Search Google Scholar
    • Export Citation
  • Kamimori, G.H., Karyekar, C.S., Otterstetter, R., Cox, D.S., Balkin, T.J., Belenky, G.L., & Eddington, N.D. (2002). The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. International Journal of Pharmaceutics, 234, 159167. PubMed doi:10.1016/S0378-5173(01)00958-9

    • Search Google Scholar
    • Export Citation
  • Kopec, B.J., Dawson, B.T., Buck, C., & Wallman, K.E. (2016). Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. Journal of Science and Medicine in Sport, 19, 272276. PubMed doi:10.1016/j.jsams.2015.04.001

    • Search Google Scholar
    • Export Citation
  • Lee, C.-L., Lin, J.-C., & Cheng, C.-F. (2011). Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance. European Journal of Applied Physiology, 111, 16691677. PubMed doi:10.1007/s00421-010-1792-0

    • Search Google Scholar
    • Export Citation
  • McNaughton, L., Lovell, R.J., Siegler, J., Midgley, A.W., Moore, L., & Bentley, D.J. (2008). The effects of caffeine ingestion on time trial cycling performance. International Journal of Sports Physiology and Performance, 3, 157163. PubMed doi:10.1123/ijspp.3.2.157

    • Search Google Scholar
    • Export Citation
  • Paton, C., Costa, V., & Guglielmo, L. (2015). Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. Journal of Sports Sciences, 33, 10761083. PubMed doi:10.1080/02640414.2014.984752

    • Search Google Scholar
    • Export Citation
  • Paton, C.D., Hopkins, W.G., & Vollebregt, L. (2001). Little effect of caffeine ingestion on repeated sprints in team-sport athletes. Medicine & Science in Sports & Exercise, 33, 822825. PubMed doi:10.1097/00005768-200105000-00023

    • Search Google Scholar
    • Export Citation
  • Paton, C.D., Lowe, T., & Irvine, A. (2010). Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. European Journal of Applied Physiology, 110, 12431250. PubMed doi:10.1007/s00421-010-1620-6

    • Search Google Scholar
    • Export Citation
  • Ryan, E.J., Kim, C.-H., Fickes, E.J., Williamson, M., Muller, M.D., Barkley, J.E., … Glickman, E.L. (2013). Caffeine gum and cycling performance: A timing study. Journal of Strength and Conditioning Research, 27, 259264. PubMed doi:10.1519/JSC.0b013e3182541d03

    • Search Google Scholar
    • Export Citation
  • Ryan, E.J., Kim, C.-H., Muller, M.D., Bellar, D.M., Barkley, J.E., Bliss, M.V., … Macander, D. (2012). Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. Journal of Strength and Conditioning Research, 26, 844850. PubMed doi:10.1519/JSC.0b013e31822a5cd4

    • Search Google Scholar
    • Export Citation
  • Salinero, J.J., Lara, B., Ruiz-Vicente, D., Areces, F., Puente-Torres, C., Gallo-Salazar, C., … Del Coso, J. (2017). CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: A pilot study. Nutrients, 9, 269. doi:10.3390/nu9030269

    • Search Google Scholar
    • Export Citation
  • Schneiker, K.T., Bishop, D., Dawson, B., & Hackett, L.P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine & Science in Sports & Exercise, 38, 578585. PubMed doi:10.1249/01.mss.0000188449.18968.62

    • Search Google Scholar
    • Export Citation
  • Sökmen, B., Armstrong, L.E., Kraemer, W.J., Casa, D.J., Dias, J.C., Judelson, D.A., & Maresh, C.M. (2008). Caffeine use in sports: Considerations for the athlete. Journal of Strength and Conditioning Research, 22, 978986. doi:10.1519/JSC.0b013e3181660cec

    • Search Google Scholar
    • Export Citation
  • Spriet, L.L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44, 175184. doi:10.1007/s40279-014-0257-8

    • Search Google Scholar
    • Export Citation
  • Stuart, G.R., Hopkins, W.G., Cook, C., & Cairns, S.P. (2005). Multiple effects of caffeine on simulated high-intensity team-sport performance. Medicine & Science in Sports & Exercise, 37, 19982005. PubMed doi:10.1249/01.mss.0000177216.21847.8a

    • Search Google Scholar
    • Export Citation
  • Syed, S.A., Kamimori, G.H., Kelly, W., & Eddington, N.D. (2005). Multiple dose pharmacokinetics of caffeine administered in chewing gum to normal healthy volunteers. Biopharmaceutics & Drug Disposition, 26, 403409. PubMed doi:10.1002/bdd.469

    • Search Google Scholar
    • Export Citation
  • Trexler, E.T., Smith-Ryan, A.E., Roelofs, E.J., Hirsch, K.R., & Mock, M.G. (2016). Effects of coffee and caffeine anhydrous on strength and sprint performance. European Journal of Sport Science, 16, 702710. PubMed doi:10.1080/17461391.2015.1085097

    • Search Google Scholar
    • Export Citation
  • Van Soeren, M.H., & Graham, T.E. (1998). Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. Journal of Applied Physiology, 85, 14931501. PubMed

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 10113 2906 135
Full Text Views 732 82 2
PDF Downloads 539 85 2