Caffeine Improves Triathlon Performance: A Field Study in Males and Females

Click name to view affiliation

Sunita Potgieter Stellenbosch University

Search for other papers by Sunita Potgieter in
Current site
Google Scholar
PubMed
Close
*
,
Hattie H. Wright North-West University

Search for other papers by Hattie H. Wright in
Current site
Google Scholar
PubMed
Close
*
, and
Carine Smith Stellenbosch University

Search for other papers by Carine Smith in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The ergogenic effect of caffeine on endurance exercise is commonly accepted. We aimed to elucidate realistically the effect of caffeine on triathlon event performance using a field study design, while allowing investigation into potential mechanisms at play. A double-blind, randomized, crossover field trial was conducted. Twenty-six triathletes (14 males and 12 females; mean ± SD: age = 37.8 ± 10.6 years, habitual caffeine intake = 413 ± 505 mg/day, percentage body fat = 14.5 ± 7.2%, and training/week = 12.8 ± 4.5 hr) participated in this study. Microencapsulated caffeine (6 mg/kg body weight) was supplemented 60 min pretrial. Performance data included time to completion, rating of perceived exertion, and profile of mood states. Blood samples taken before, during, and postrace were analyzed for cortisol, testosterone, and full blood count. Capillary blood lactate concentrations were assessed prerace, during transitions, and 3, 6, 9, 12, and 15 min after triathlons. Caffeine supplementation resulted in a 3.7% reduction in swim time (33.5 ± 7.0 vs. 34.8 ± 8.1 min, p < .05) and a 1.3% reduction in time to completion (149.6 ± 19.8 vs. 151.5 ± 18.6 min, p < .05) for the whole group. Gender differences and individual responses are also presented. Caffeine did not alter the rating of perceived exertion significantly, but better performance after caffeine supplementation suggests a central effect resulting in greater overall exercise intensity at the same rating of perceived exertion. Caffeine supplementation was associated with higher postexercise cortisol levels (665 ± 200 vs. 543 ± 169 nmol/L, p < .0001) and facilitated greater peak blood lactate accumulation (analysis of variance main effect, p < .05). We recommend that triathlon athletes with relatively low habitual caffeine intake may ingest 6 mg/kg body weight caffeine, 45–60 min before the start of Olympic-distance triathlon to improve their performance.

Potgieter is with the Division of Human Nutrition, Dept. of Interdisciplinary Health Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa. Wright is with the Centre for Excellence in Nutrition, North-West University, Potchefstroom, South Africa. Smith is with the Dept. of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa.

Address author correspondence to Carine Smith at csmith@sun.ac.za.

Supplementary Materials

    • Supplemental Materials (PDF 91.1 KB)
    • Supplemental Materials (PDF 141 KB)
    • Supplemental Materials (PDF 33.1 KB)
    • Supplemental Materials (PDF 12.3 KB)
  • Collapse
  • Expand
  • Abian, P., Del Coso, J., Salinero, J.J., Gallo-Salazar, C., Areces, F., Ruiz-Vicente, D., … Abian-Vicen, J. (2015). The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players. Journal of Sports Sciences, 33(10), 10421050. PubMed ID: 25530454 doi:10.1080/02640414.2014.981849

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aslani, A., & Jalilian, F. (2013). Design, formulation and evaluation of caffeine chewing gum. Advanced Biomedical Research, 2, 72. PubMed ID: 24223387 doi:10.4103/2277-9175.115806

    • Search Google Scholar
    • Export Citation
  • Backhouse, S.H., Biddle, S.J., Bishop, N.C., & Williams, C. (2011). Caffeine ingestion, affect and perceived exertion during prolonged cycling. Appetite, 57(1), 247252. PubMed ID: 21605608 doi:10.1016/j.appet.2011.05.304

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bassini-Cameron, A., Sweet, E., Bottino, A., Bittar, C., Veiga, C., & Cameron, L.C. (2007). Effect of caffeine supplementation on haematological and biochemical variables in elite soccer players under physical stress conditions. British Journal of Sports Medicine, 41(8), 523530. PubMed ID: 17473001 doi:10.1136/bjsm.2007.035147

    • Search Google Scholar
    • Export Citation
  • Bell, D.G., Jacobs, I., & Zamecnik, J. (1998). Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. European Journal of Applied Physiology, 77(5), 427433. doi:10.1007/s004210050355

    • Search Google Scholar
    • Export Citation
  • Bishop, N.C., Fitzgerald, C., Porter, P.J., Scanlon, G.A., & Smith, A.C. (2005). Effect of caffeine ingestion on lymphocyte counts and subset activation in vivo following strenuous cycling. European Journal of Applied Physiology, 93(5–6), 606613. doi:10.1007/s00421-004-1271-6

    • Search Google Scholar
    • Export Citation
  • Bridge, C.A., & Jones, M.A. (2006). The effect of caffeine ingestion on 8 km run performance in a field setting. Journal of Sports Sciences, 24(4), 433439. PubMed ID: 16492607 doi:10.1080/02640410500231496

    • Search Google Scholar
    • Export Citation
  • Burke, L.M. (2008). Caffeine and sports performance. Applied Physiology, Nutrition, and Metabolism, 33(6), 13191334. PubMed ID: 19088794 doi:10.1139/H08-130

    • Search Google Scholar
    • Export Citation
  • Butt, M.S., & Sultan, M.T. (2011). Coffee and its consumption: Benefits and risks. Critical Reviews in Food Science and Nutrition, 51(4), 363373. PubMed ID: 21432699 doi:10.1080/10408390903586412

    • Search Google Scholar
    • Export Citation
  • Chester, N., & Wojek, N. (2008). Caffeine consumption amongst British athletes following changes to the 2004 WADA prohibited list. International Journal of Sports Medicine, 29(6), 524528. PubMed ID: 18027309 doi:10.1055/s-2007-989231

    • Search Google Scholar
    • Export Citation
  • Childs, E., & De Wit, H. (2008). Enhanced mood and psychomotor performance by a caffeine–containing energy capsule in fatigued individuals. Experimental and Clinical Psychopharmacology, 16(1), 1321. PubMed ID: 18266548 doi:10.1037/1064-1297.16.1.13

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christensen, P.M., Shirai, Y., Ritz, C., & Nordsborg, N.B. (2017). Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Frontiers in Physiology, 8, 240. doi:10.3389/fphys.2017.00240

    • Search Google Scholar
    • Export Citation
  • Dallam, G.M., Jonas, S., & Miller, T.K. (2005). Medical considerations in triathlon competition: Recommendations for triathlon organisers, competitors and coaches. Sports Medicine, 35(2), 143161. PubMed ID: 15707378 doi:10.2165/00007256-200535020-00004

    • Search Google Scholar
    • Export Citation
  • Davis, J.K., & Green, J.M. (2009). Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Medicine, 39(10), 813832. PubMed ID: 19757860 doi:10.2165/11317770-000000000-00000

    • Search Google Scholar
    • Export Citation
  • De Morree, H.M., Klein, C., & Marcora, S.M. (2014). Cortical substrates of the effects of caffeine and time-on-task on perception of effort. Journal of Applied Physiology, 117(12), 15141523. PubMed ID: 25342703 doi:10.1152/japplphysiol.00898.2013

    • Search Google Scholar
    • Export Citation
  • Desbrow, B., & Leveritt, M. (2006). Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. International Journal of Sport Nutrition and Exercise Metabolism, 16, 545558. PubMed ID: 17240785 doi:10.1123/ijsnem.16.5.545

    • Search Google Scholar
    • Export Citation
  • Desbrow, B., & Leveritt, M. (2007). Well-trained endurance athletes’ knowledge, insight, and experience of caffeine use. International Journal of Sport Nutrition and Exercise Metabolism, 17, 328339. PubMed ID: 17962708 doi:10.1123/ijsnem.17.4.328

    • Search Google Scholar
    • Export Citation
  • Dickerson, S.S., & Kemeny, M.E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130(3), 355391. PubMed ID: 15122924 doi:10.1037/0033-2909.130.3.355

    • Search Google Scholar
    • Export Citation
  • Doherty, M., & Smith, P.M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine & Science in Sports, 15(2), 6978. PubMed ID: 15773860 doi:10.1111/j.1600-0838.2005.00445.x

    • Search Google Scholar
    • Export Citation
  • Enea, C., Boisseau, N., Fargeas-Gluck, M.A., Diaz, V., & Dugue, B. (2011). Circulating androgens in women: Exercise-induced changes. Sports Medicine, 41(1), 115. PubMed ID: 21142281 doi:10.2165/11536920-000000000-00000

    • Search Google Scholar
    • Export Citation
  • Fredholm, B.B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E.E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51(1), 83133. PubMed ID: 10049999

    • Search Google Scholar
    • Export Citation
  • Gaesser, G.A., & Rich, R.G. (1985). Influence of caffeine on blood lactate response during incremental exercise. International Journal of Sports Medicine, 6(4), 207211. PubMed ID: 4044104 doi:10.1055/s-2008-1025841

    • Search Google Scholar
    • Export Citation
  • Ganio, M.S., Klau, J.F., Casa, D.J., Armstrong, L.E., & Maresh, C.M. (2009). Effect of caffeine on sport-specific endurance performance: A systematic review. The Journal of Strength & Conditioning Research, 23(1), 315324. PubMed ID: 19077738 doi:10.1519/JSC.0b013e31818b979a

    • Search Google Scholar
    • Export Citation
  • Glaister, M., Williams, B.H., Muniz-Pumarez, D., Balsabobre-Fernandez, C., & Foley, P. (2016). The effects of caffeine supplementation on physiological responses to submaximal exercise in endurance-trained men. PLoS ONE, 11(8), 0161375. PubMed ID: 27532605 doi:10.1371/journal.pone.0161375

    • Search Google Scholar
    • Export Citation
  • Goldstein, E.R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., … Antonio, J. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition, 7(1), 5. PubMed ID: 20205813 doi:10.1186/1550-2783-7-5

    • Search Google Scholar
    • Export Citation
  • Graham, T.E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports Medicine, 31(11), 785807. PubMed ID: 11583104 doi:10.2165/00007256-200131110-00002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hadjicharalambous, M.P., Kilduff, L.P., & Pitsiladis, Y.P. (2010). Brain serotonergic and dopaminergic modulators, perceptual responses and endurance exercise performance following caffeine co-ingested with a high fat meal in trained humans. Journal of the International Society of Sports Nutrition, 7, 22.

    • Search Google Scholar
    • Export Citation
  • Hausswirth, C., & Brisswalter, J. (2008). Strategies for improving performance in long duration events: Olympic distance triathlon. Sports Medicine, 38(11), 881891. PubMed ID: 18937520 doi:10.2165/00007256-200838110-00001

    • Search Google Scholar
    • Export Citation
  • Jones, G. (2008). Caffeine and other sympathomimetic stimulants: Modes of action and effects on sports performance. Essays in Biochemistry, 44, 109123. PubMed ID: 18384286 doi:10.1042/bse0440109

    • Search Google Scholar
    • Export Citation
  • Kalmar, J.M., & Cafarelli, E. (2004). Caffeine: A valuable tool to study central fatigue in humans? Exercise and Sport Sciences Reviews, 32(4), 143147. PubMed ID: 15604932 doi:10.1097/00003677-200410000-00004

    • Search Google Scholar
    • Export Citation
  • Karkoulias, K., Habeos, I., & Charokopos, N. (2008). Hormonal responses to marathon running in non-elite athletes. European Journal of Internal Medicine, 19(8), 598601. PubMed ID: 19046725 doi:10.1016/j.ejim.2007.06.032

    • Search Google Scholar
    • Export Citation
  • Keisler, B.D., & Armsey, T.D. (2006). Caffeine as an ergogenic aid. Current Sports Medicine Reports, 5(4), 215219. PubMed ID: 16822345 doi:10.1097/01.CSMR.0000306510.57644.a7

    • Search Google Scholar
    • Export Citation
  • Konings, M.J., Schoenmakers, P.P., Walker, A.J., & Hettinga, F.J. (2016). The behavior of an opponent alters pacing decisions in 4-km cycling time trials. Physiology & Behavior, 158, 15. PubMed ID: 26896731 doi:10.1016/j.physbeh.2016.02.023

    • Search Google Scholar
    • Export Citation
  • Laursen, P.B., Francis, G.T., Abbiss, C.R., Newton, M.J., & Nosaka, K. (2007). Reliability of time-to-exhaustion versus time-trial running tests in runners. Medicine & Science in Sports & Exercise, 39(8), 13741379. PubMed ID: 17762371 doi:10.1249/mss.0b013e31806010f5

    • Search Google Scholar
    • Export Citation
  • Liljegren, J.C., Carhart, R.A., Lawday, P., Tschopp, S., & Sharp, R. (2008). Modeling the wet bulb globe temperature using standard meteorological measurements. Journal of Occupational and Environmental Hygiene, 5(10), 645655. PubMed ID: 18668404 doi:10.1080/15459620802310770

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lovallo, W.R., Farag, N.H., Vincent, A.S., Thomas, T.L., & Wilson, M.F. (2006). Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacology, Biochemistry, and Behavior, 83(3), 441447. PubMed ID: 16631247 doi:10.1016/j.pbb.2006.03.005

    • Search Google Scholar
    • Export Citation
  • MacIntosh, B.R., & Wright, B.M. (1995). Caffeine ingestion and performance of a 1,500-metre swim. Canadian Journal of Applied Physiology, 20(2), 168177. PubMed ID: 7640644 doi:10.1139/h95-012

    • Search Google Scholar
    • Export Citation
  • Meeusen, R., Roelands, B., & Spriet, L.L. (2013). Caffeine, exercise and the brain. Nestlé Nutrition Institute Workshop Series, 76, 112. PubMed ID: 29642515

    • Search Google Scholar
    • Export Citation
  • Pageaux, B. (2016). Perception of effort in exercise science: Definition, measurement and perspectives. European Journal of Sport Science, 16(8), 110. doi:10.1080/17461391.2016.1188992

    • Search Google Scholar
    • Export Citation
  • Paluska, S.A. (2003). Caffeine and exercise. Current Sports Medicine Reports, 2(4), 213219. PubMed ID: 12834577 doi:10.1249/00149619-200308000-00008

    • Search Google Scholar
    • Export Citation
  • Phillips, M.D., Rola, K.S., Christensen, K.V., Ross, J.W., & Mitchell, J.B. (2014). Preexercise energy drink consumption does not improve endurance cycling performance but increase lactate, monocyte, and interleukin-6 response. The Journal of Strength & Conditioning Research, 28(5), 14431453. doi:10.1519/JSC.0000000000000275

    • Search Google Scholar
    • Export Citation
  • Richards, J.R., Farias, V.F., & Clingan, C.S. (2014). Association of leukocytosis with amphetamine and cocaine use. Scientific World Journal, 2014, 207651. doi:10.1155/2014/207651

    • Search Google Scholar
    • Export Citation
  • Sinclair, C.J., & Geiger, J.D. (2000). Caffeine use in sports. A pharmacological review. The Journal of Sports Medicine and Physical Fitness, 40(1), 7179. PubMed ID: 10822912

    • Search Google Scholar
    • Export Citation
  • Siris, S.G., Siris, E.S., Van Kammen, D.P., Docherty, J.P., Alexander, P.E., & Bunney, W.E., Jr. (1980). Effects of dopamine blockade on gonadotropins and testosterone in men. The American Journal of Psychiatry, 137(2), 211214. PubMed ID: 7352577 doi:10.1176/ajp.137.2.211

    • Search Google Scholar
    • Export Citation
  • Smith, C., & Myburgh, K.H. (2006). Are the relationships between early activation of lymphocytes and cortisol and testosterone influenced by intensified cycling training in men? Applied Physiology, Nutrition, and Metabolism, 31(3), 226234. doi:10.1139/h05-029

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sokmen, B., Armstrong, L.E., Kraemer, W.J., Casa, D.J., Dias, J.C., Judelson, D.A., & Maresh, C.M. (2008). Caffeine use in sports: Considerations for the athlete. The Journal of Strength & Conditioning Research, 22(3), 978986. doi:10.1519/JSC.0b013e3181660cec

    • Search Google Scholar
    • Export Citation
  • Stadheim, H.K., Kyamme, B., Olsen, R., Drevon, C.A., Ivy, J.L., & Jensen, J. (2013). Caffeine increases performance in cross-country double-poling time trial exercise. Medicine & Science in Sports & Exercise, 45(11), 21752183. PubMed ID: 23591294 doi:10.1249/MSS.0b013e3182967948

    • Search Google Scholar
    • Export Citation
  • Tallis, J., Duncan, M.J., & James, R.S. (2015). What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? British Journal of Pharmacology, 172(15), 37033713. PubMed ID: 25988508 doi:10.1111/bph.13187

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tallis, J., James, R.S., Cox, V.M., & Duncan, M.J. (2013). The effect of a physiological concentration of caffeine on the endurance of maximally and submaximally stimulated mouse soleus muscle. Journal of Physiological Sciences, 63(2), 125132. PubMed ID: 23292763 doi:10.1007/s12576-012-0247-2

    • Search Google Scholar
    • Export Citation
  • Terry, P.C., Lane, A.M., & Fogarty, G.J. (2003). Construct validity of the POMS-A for use with adults. Psychology of Sport and Exercise, 4, 125139. doi:10.1016/S1469-0292(01)00035-8

    • Search Google Scholar
    • Export Citation
  • Tunnicliffe, J.M., Erdman, K.A., Reimer, R.A., Lun, V., & Shearer, J. (2008). Consumption of dietary caffeine and coffee in physically active populations: Physiological interactions. Applied Physiology, Nutrition, and Metabolism, 33(6), 13011310. PubMed ID: 19088792 doi:10.1139/H08-124

    • Search Google Scholar
    • Export Citation
  • Uehara, T., Sumikyoshi, T., Itoh, H., & Kurata, K. (2008). Lactate production and neurotransmitters; evidence from microdialysis studies. Pharmacology Biochemistry and Behavior, 90(2), 273281. doi:10.1016/j.pbb.2008.04.001

    • Search Google Scholar
    • Export Citation
  • Walker, G.J., Finlay, O., Griffiths, H., Sylvester, J., Williams, M., & Bishop, N.C. (2007). Immunoendocrine response to cycling following ingestion of caffeine and carbohydrate. Medicine & Science in Sports & Exercise, 39(9), 15541560. PubMed ID: 17805088 doi:10.1249/mss.0b013e3180a74228

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 9119 1916 194
Full Text Views 691 155 13
PDF Downloads 676 159 15