Salt + Glycerol-Induced Hyperhydration Enhances Fluid Retention More Than Salt- or Glycerol-Induced Hyperhydration

Click name to view affiliation

Eric D.B. Goulet University of Sherbrooke

Search for other papers by Eric D.B. Goulet in
Current site
Google Scholar
PubMed
Close
*
,
Adrien De La Flore University of Sherbrooke

Search for other papers by Adrien De La Flore in
Current site
Google Scholar
PubMed
Close
*
,
Félix A. Savoie University of Sherbrooke

Search for other papers by Félix A. Savoie in
Current site
Google Scholar
PubMed
Close
*
, and
Jonathan Gosselin University of Sherbrooke

Search for other papers by Jonathan Gosselin in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Hyperhydration has been demonstrated to improve work capacity and cardiovascular and thermoregulatory functions, enhance orthostatic tolerance, slow or neutralize bone demineralization, and decrease postdive bubble formation. Adding sodium or glycerol to a hyperhydration solution optimizes fluid retention. Sodium and glycerol produce their effect through different physiological mechanisms. If combined into a hyperhydration solution, their impact on fluid retention could potentially be greater than their singular effect. We compared the effect of salt-induced hyperhydration (SIH), glycerol-induced hyperhydration (GIH), and salt + glycerol-induced hyperhydration (SGIH) on fluid balance responses during a 3-hr passive experiment. Using a randomized, crossover, and counterbalanced experiment, 15 young men (22 ± 4 years) underwent three, 3-hr hyperhydration experiments during which they ingested 30 ml/kg fat-free mass (FFM) of water with an artificial sweetener plus either (a) 7.5 g of table salt/L (SIH), (b) 1.4 g glycerol/kg FFM (GIH), or (c) 7.5 g of table salt/L + 1.4 g glycerol/kg FFM (SGIH). After 3 hr, there were no significant differences in plasma volume changes among experiments (SIH: 11.3% ± 9.9%; GIH: 7.6% ± 12.7%; SGIH: 11.3% ± 13.7%). Total urine production was significantly lower (SIH: 775 ± 329 ml; GIH: 1,248 ± 270 ml; SGIH: 551 ± 208 ml) and fluid retention higher (SIH: 1,127 ± 212 ml; GIH: 729 ± 115 ml; SGIH: 1,435 ± 140 ml) with SGIH than either GIH or SIH. Abdominal discomfort was low and not significantly different among experiments. In conclusion, results show that SGIH reduces urine production and provides more fluid retention than either SIH or GIH.

Goulet is with the Performance, Hydration and Thermoregulation Laboratory, Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada. De La Flore and Gosselin are with the Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada. Goulet is also with the Research Centre on Aging, University of Sherbrooke, Sherbrooke, Québec, Canada. Savoie is with the Dept. of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, University of Sherbrooke, Sherbrooke, Québec, Canada.

Address author correspondence to Eric D.B. Goulet at eric.goulet@usherbrooke.ca.
  • Collapse
  • Expand
  • Armstrong, L.E., Soto, J.A., Hacker, F.T., Jr., Casa, D.J., Kavouras, S.A., & Maresh, C.M. (1998). Urinary indices during dehydration, exercise, and rehydration. International Journal of Sport Nutrition, 8(4), 345355. PubMed doi:10.1123/ijsn.8.4.345

    • Search Google Scholar
    • Export Citation
  • Curran-Everett, D. (2000). Multiple comparisons: Philosophies and illustrations. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 279(1), 18. PubMed doi:10.1152/ajpregu.2000.279.1.R1

    • Search Google Scholar
    • Export Citation
  • Dill, D.B., & Costill, D.L. (1974). Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. Journal of Applied Physiology, 37(2), 247248. PubMed doi:10.1152/jappl.1974.37.2.247

    • Search Google Scholar
    • Export Citation
  • Dion, T., Savoie, F.A., Asselin, A., Gariepy, C., & Goulet, E.D. (2013). Half-marathon running performance is not improved by a rate of fluid intake above that dictated by thirst sensation in trained distance runners. European Journal of Applied Physiology, 113(12), 30113020. PubMed doi:10.1007/s00421-013-2730-8

    • Search Google Scholar
    • Export Citation
  • Easton, C., Calder, A., Prior, F., Dobinson, S., I’Anson, R., MacGregor, R., … Pitsiladis, Y.P. (2009). The effects of a novel “fluid loading” strategy on cardiovascular and haematological responses to orthostatic stress. European Journal of Applied Physiology, 105(6), 899908. PubMed doi:10.1007/s00421-008-0976-3

    • Search Google Scholar
    • Export Citation
  • Freund, B.J., Montain, S.J., Young, A.J., Sawka, M.N., DeLuca, J.P., Pandolf, K.B., & Valeri, C.R. (1995). Glycerol hyperhydration: Hormonal, renal, and vascular fluid responses. Journal of Applied Physiology, 79(6), 20692077. PubMed doi:10.1152/jappl.1995.79.6.2069

    • Search Google Scholar
    • Export Citation
  • Gempp, E., Blatteau, J.E., Pontier, J.M., Balestra, C., & Louge, P. (2009). Preventive effect of pre-dive hydration on bubble formation in divers. British Journal of Sports Medicine, 43(3), 224228. PubMed doi:10.1136/bjsm.2007.043240

    • Search Google Scholar
    • Export Citation
  • Gigou, P.Y., Dion, T., Asselin, A., Berrigan, F., & Goulet, E.D. (2012). Pre-exercise hyperhydration-induced bodyweight gain does not alter prolonged treadmill running time-trial performance in warm ambient conditions. Nutrients, 4(8), 949966. PubMed doi:10.3390/nu4080949

    • Search Google Scholar
    • Export Citation
  • Goulet, E. (2008). Pre-exercise hyperhydration: Comments on the 2007 ACSM position stand on exercise and fluid replacement. Journal of Exercise Physiology Online, 11(2), 6474.

    • Search Google Scholar
    • Export Citation
  • Goulet, E.D. (2009). Review of the effects of glycerol-containing hyperhydration solutions on gastric emptying and intestinal absorption in humans and in rats. International Journal of Sport Nutrition and Exercise Metabolism, 19(5), 547560. PubMed doi:10.1123/ijsnem.19.5.547

    • Search Google Scholar
    • Export Citation
  • Goulet, E.D. (2010). Glycerol-induced hyperhydration: A method for estimating the optimal load of fluid to be ingested before exercise to maximize endurance performance. Journal of Strength and Conditioning Research, 24(1), 7478. PubMed doi:10.1519/JSC.0b013e3181bd43e2

    • Search Google Scholar
    • Export Citation
  • Goulet, E.D., & Asselin, A. (2015). Reliability and validity of a low-cost, pocket-sized and battery operated sodium analyzer in measuring urinary sodium concentration. Technology and Health Care, 23, 881891. PubMed doi:10.3233/THC-151028

    • Search Google Scholar
    • Export Citation
  • Goulet, E.D., Rousseau, S.F., Lamboley, C.R., Plante, G.E., & Dionne, I.J. (2008). Pre-exercise hyperhydration delays dehydration and improves endurance capacity during 2 h of cycling in a temperate climate. Journal of Physiological Anthropology, 27(5), 263271. PubMed doi:10.2114/jpa2.27.263

    • Search Google Scholar
    • Export Citation
  • Greenleaf, J.E., Looft-Wilson, R., Wisherd, J.L., McKenzie, M.A., Jensen, C.D., & Whittam, J.H. (1997). Pre-exercise hypervolemia and cycle ergometer endurance in men. Biology of Sport, 14(2), 103114. PubMed

    • Search Google Scholar
    • Export Citation
  • Hutler, M., Beneke, R., & Boning, D. (2000). Determination of circulating hemoglobin mass and related quantities by using capillary blood. Medicine & Science in Sports & Exercise, 32(5), 10241027. doi:10.1097/00005768-200005000-00022

    • Search Google Scholar
    • Export Citation
  • Kato, T., Hayashi, Y., Inoue, K., & Yuasa, H. (2004). Functional characterization of the carrier-mediated transport system for glycerol in everted sacs of the rat small intestine. Biological and Pharmaceutical Bulletin, 27(11), 18261830. PubMed doi:10.1248/bpb.27.1826

    • Search Google Scholar
    • Export Citation
  • Koehler, K., Braun, H., de Marees, M., Geyer, H., Thevis, M., Mester, J., & Schaenzer, W. (2014). Glycerol administration before endurance exercise: Metabolism, urinary glycerol excretion and effects on doping-relevant blood parameters. Drug Testing and Analysis, 6(3), 202209. PubMed doi:10.1002/dta.1446

    • Search Google Scholar
    • Export Citation
  • Lyons, T.P., Riedesel, M.L., Meuli, L.E., & Chick, T.W. (1990). Effects of glycerol-induced hyperhydration prior to exercise in the heat on sweating and core temperature. Medicine & Science in Sports & Exercise, 22(4), 477483. PubMed

    • Search Google Scholar
    • Export Citation
  • Melin, B., Jimenez, C., Koulmann, N., Allevard, A.M., & Gharib, C. (2002). Hyperhydration induced by glycerol ingestion: Hormonal and renal responses. Canadian Journal of Physiology and Pharmacology, 80(6), 526532. PubMed doi:10.1139/y02-080

    • Search Google Scholar
    • Export Citation
  • Nelson, J.L., Harmon, M.E., & Robergs, R.A. (2011). Identifying plasma glycerol concentration associated with urinary glycerol excretion in trained humans. Journal of Analytical Toxicology, 35(9), 617623. PubMed doi:10.1093/anatox/35.9.617

    • Search Google Scholar
    • Export Citation
  • Nelson, J.L., & Robergs, R.A. (2007). Exploring the potential ergogenic effects of glycerol hyperhydration. Sports Med, 37(11), 9811000. PubMed doi:10.2165/00007256-200737110-00005

    • Search Google Scholar
    • Export Citation
  • Noakes, T.D., Rehrer, N.J., & Maughan, R.J. (1991). The importance of volume in regulating gastric emptying. Medicine & Science in Sports & Exercise, 23(3), 307313. PubMed

    • Search Google Scholar
    • Export Citation
  • O’Brien, C., Freund, B.J., Young, A.J., & Sawka, M.N. (2005). Glycerol hyperhydration: Physiological responses during cold-air exposure. Journal of Applied Physiology, 99(2), 515521. doi:10.1152/japplphysiol.00176.2005

    • Search Google Scholar
    • Export Citation
  • Riedesel, M.L., Allen, D.Y., Peake, G.T., & Al-Qattan, K. (1987). Hyperhydration with glycerol solutions. Journal of Applied Physiology, 63(6), 22622268. PubMed doi:10.1152/jappl.1987.63.6.2262

    • Search Google Scholar
    • Export Citation
  • Robergs, R.A., & Griffin, S.E. (1998). Glycerol. Biochemistry, pharmacokinetics and clinical and practical applications. Sports Medicine, 26(3), 145167. PubMed doi:10.2165/00007256-199826030-00002

    • Search Google Scholar
    • Export Citation
  • Savoie, F.A., Asselin, A., & Goulet, E.D. (2016). Comparison of sodium chloride tablets-induced, sodium chloride solution-induced, and glycerol-induced hyperhydration on fluid balance responses in healthy men. Journal of Strength and Conditioning Research, 30(10), 28802891. PubMed doi:10.1519/JSC.0000000000001371

    • Search Google Scholar
    • Export Citation
  • Savoie, F.A., Dion, T., Asselin, A., & Goulet, E.D. (2015). Sodium-induced hyperhydration decreases urine output and improves fluid balance compared with glycerol- and water-induced hyperhydration. Applied Physiology, Nutrition, and Metabolism, 40(1), 5158. PubMed doi:10.1139/apnm-2014-0243

    • Search Google Scholar
    • Export Citation
  • Sugihara, A., Fujii, N., Tsuji, B., Watanabe, K., Niwa, T., & Nishiyasu, T. (2014). Hypervolemia induced by fluid ingestion at rest: Effect of sodium concentration. European Journal of Applied Physiology, 114(10), 21392145. PubMed doi:10.1007/s00421-014-2933-7

    • Search Google Scholar
    • Export Citation
  • Zorbas, Y.G., Federenko, Y.F., & Naexu, K.A. (1991). Effect of hyperhydration on bone mineralization in physically healthy subjects after prolonged restriction of motor activity. Acta Astronautica, 25(11), 727731. PubMed doi:10.1016/0094-5765(91)90049-B

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5116 1460 78
Full Text Views 148 29 12
PDF Downloads 138 30 13