The Effect of Mode of Transport on Intraindividual Variability in Glycemic and Insulinemic Response Testing

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

The effect of light- to moderate-intensity exercise, such as that used as a mode of transport, on glycemic response testing is unclear. The aim was to investigate the effect of acute exercise (walking and cycling), simulated to act as a mode of transport, prior to glycemic response testing on the intraindividual variability of blood glucose and insulin. A total of 11 male participants visited the laboratory four times. Initially, they undertook a maximum oxygen uptake and two submaximal exercise tests. For the other three visits, they either rested (25 min), cycled, or walked 5 km followed by a 2-hr glycemic response test after consuming a glucose drink (50 g of available carbohydrate). The mean coefficient of variation of each transport group was below the International Organization for Standardization cutoff of 30%. The highest mean coefficient of variation of glucose area under the curve (AUC) was between the rest and the walking trials (30%) followed by walking and cycling (26%). For insulin AUC, the highest mean coefficient of variation was between walking and cycling (28%) followed by rest and walking (24%). The lowest glucose AUC and insulin AUC were between rest and cycling (25% and 14%, respectively). This study did not find differences (p > .05) between the conditions for glucose AUC (at 120 min, rest: 134.5 ± 104.6 mmol/L; walking: 115.5 ± 71.7 mmol/L; and cycling: 142.5 ± 75 mmol/L) and insulin AUC (at 120 min, rest: 19.45 ± 9.12 μmol/ml; walking: 16.49 ± 8.42 μmol/ml; and cycling: 18.55 ± 9.23 μmol/ml). The results indicate no difference between the tests undertaken; however, further research should ensure the inclusion of two rest conditions.

El-Chab and Clegg are with the Dept. of Sport and Health Sciences, Oxford Brookes University, Oxford, United Kingdom.

Address author correspondence to Miriam Clegg at mclegg@brookes.ac.uk.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • Australian PoCT Practitioner’s Network. (2015August 15). HemoCue Hb 201+ method and sample collection. Retrieved from http://www.appn.net.au/Data/Sites/1/appn/02implementation/technicalresources/haematology/hemocuehb201methodandsamplecollection.pdf

    • Export Citation
  • Ben-EzraV.JankowskiC.KendrickK. & NicholsD. (1995). Effect of intensity and energy expenditure on postexercise insulin responses in women. Journal of Applied Physiology 79(6) 20292034. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BonenA.Ball-BurnettM. & RusselC. (1998). Glucose tolerance is improved after low- and high-intensity exercise in middle-age men and women. Canadian Journal of Applied Physiology 23(6) 583593. PubMed doi:10.1139/h98-033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BraunB.ZimmermannM.B. & KretchmerN. (1995). Effects of exercise intensity on insulin sensitivity in women with non-insulin-dependent diabetes mellitus. Journal of Applied Physiology 78(1) 300306. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrounsF.BjorckI.FraynK.N.GibbsL.LangV.SlamaG. & WoleverT. (2005). Glycaemic index methodology. Nutrition Research Reviews 18(1) 145171. PubMed doi:10.1079/NRR2005100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrowningR.C.BakerE.A.HerronJ.A. & KramR. (2006). Effects of obesity and sex on the energetic cost and preferred speed of walking. Journal of Applied Physiology 100(2) 390398. PubMed doi:10.1152/japplphysiol.00767.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CleggM.E.PrattM.MeadeC.M. & HenryC. (2011). The addition of raspberries and blueberries to a starch-based food does not alter the glycaemic response. The British Journal of Nutrition 106335338. PubMed doi:10.1017/S0007114511001450

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Department for Transport. (2013July 30). How people travel (mode) (NTS03). Retrieved from https://www.gov.uk/government/statistical-data-sets/nts03-modal-comparisons#table-nts0309

    • Export Citation
  • El-ChabA.SimpsonC. & LightowlerH. (2016). The reproducibility of a diet using three different dietary standardisation techniques in athletes. European Journal of Clinical Nutrition 70(8) 954958. PubMed doi:10.1038/ejcn.2016.55

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Food and Agriculture Organization and World Health Organization. (1998). Carbohydrates in human nutrition. Report of a joint FAO/WHO expert consultation (Vol. 66). Rome, Italy: Author.

    • Search Google Scholar
    • Export Citation
  • Foster-PowellK.HoltS.H. & Brand-MillerJ.C. (2002). International table of glycemic index and glycemic load values: 2002. American Journal of Clinical Nutrition 76(1) 556. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarrisJ.A. & BenedictF.G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences of the United States of America 4(12) 370373. PubMed doi:10.1073/pnas.4.12.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HayashiY.NagasakaS.TakahashiN.KusakaI.IshibashiS.NumaoS.TanakaK. (2005). A single bout of exercise at higher intensity enhances glucose effectiveness in sedentary men. The Journal of Clinical Endocrinology & Metabolism 90(7) 40354040. PubMed doi:10.1210/jc.2004-2092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HopkinsW.G. (2000). Measures of reliability in sports medicine and science. Sports Medicine 30(1) 115. PubMed doi:10.2165/00007256-200030010-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HowleyE.T.BassettD.R. & WelchH.G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine & Science in Sports & Exercise 27(9) 12921301. PubMed doi:10.1249/00005768-199509000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Standards Office. (2010). ISO 26642:2010 food products—Determination of the glycaemic index (GI) and recommendation for food classification. Geneva, Switzerland: Author.

    • Search Google Scholar
    • Export Citation
  • IPAQ. (2002August). International Physical Activity Questionnaires: Short last 7 days self-administered format. Retrieved from https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0aGVpcGFxfGd4OjhlMTcxZGJkZmMxYTg1NQ

    • Export Citation
  • KingD.S.BaldusP.J.SharpR.L.KeslL.D.FeltmeyerT.L. & RiddleM.S. (1995). Time course for exercise-induced alterations in insulin action and glucose tolerance in middle-aged people. Journal of Applied Physiology 78(1) 1722. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KnudsenS.H.KarstoftK.PedersenB.K.van HallG. & SolomonT.P.J. (2014). The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum. Physiological Reports 2(8) 12114. PubMed doi:10.14814/phy2.12114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NazarK.Kaciuba-UściłkoH.Chwalbińska-MonetaJ.KrotkiewskiM. & BiczB. (1987). Plasma insulin and C-peptide responses to oral glucose load after physical exercise in men with normal and impaired glucose tolerance. Acta Physiologica Polonica 38(6) 458466. PubMed

    • Search Google Scholar
    • Export Citation
  • Oxford Brookes University. (2014). Oxford Brookes University—Parking permit order form. Retrieved from https://www.brookes.ac.uk/about-brookes/sustainability/travel/university-car-parking/parking-permit-order-form/

    • Export Citation
  • Oxford Brookes University. (2016February). Oxford Brookes University interim travel plan 2016–2018. Retrieved from https://www.brookes.ac.uk/uploadedFiles/Site_assets/Documents/Travel/Oxford%20Brookes%20Interim%20Travel%20Plan%202016-18.pdf

    • Export Citation
  • RobertsS.DesbrowB.GrantG.ShailendraA.-D. & LeverittM. (2013). Glycemic response to carbohydrate and the effects of exercise and protein. Nutrition 29(6) 881885. PubMed doi:10.1016/j.nut.2012.12.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roche Diagnostic USA. (2017May 4). Cobas 4000 analyzer series. Retrieved from https://usdiagnostics.roche.com/en/core_laboratory/instrument/cobas-4000-analyzer-series.html#menu

    • Export Citation
  • RoseA.J.HowlettK.KingD.S. & HargreavesM. (2001). Effect of prior exercise on glucose metabolism in trained men. American Journal of Physiology. Endocrinology and Metabolism 281(4) E766771. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StamfordB.A.RowlandR. & MoffattR.J. (1978). Effects of severe prior exercise on assessment of maximal oxygen uptake. Journal of Applied Physiology 44(4) 559563. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilliamsS.M.VennB.J.PerryT.BrownR.WallaceA.MannJ.I. & GreenT.J. (2008). Another approach to estimating the reliability of glycaemic index. The British Journal of Nutrition 100(2) 364372. PubMed doi:10.1017/S0007114507894311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WoleverT.M.JenkinsD.J.OcanaA.M.RaoV.A. & CollierG.R. (1988). Second-meal effect: Low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. American Journal of Clinical Nutrition 48(4) 10411047. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WoleverT.M.NuttallF.Q.LeeR.WongG.S.JosseR.G.CsimaA. & JenkinsD.J. (1985). Prediction of the relative blood glucose response of mixed meals using the white bread glycemic index. Diabetes Care 8(5) 418428. PubMed doi:10.2337/diacare.8.5.418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WoleverT.M.VorsterH.H.BjörckI.Brand-MillerJ.BrighentiF.MannJ.I.WuX. (2003). Determination of the glycaemic index of foods: Interlaboratory study. European Journal of Clinical Nutrition 57(3) 475482. PubMed doi:10.1038/sj.ejcn.1601551

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 49 49 8
Full Text Views 1 1 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar