Case Study: Dose Response of Caffeine on 20-km Handcycling Time Trial Performance in a Paratriathlete

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Caffeine’s (CAF) ability to influence upper-body exercise endurance performance may be related to an individual’s training status. This case study therefore aimed to investigate the ergogenic effects of CAF dose on 20-km time trial (TT) performance of an elite male paratriathlete (wheelchair user; age = 46 years, body mass = 76.9 kg, body fat = 25.4%, and handcycling [peak oxygen uptake, V˙O2peak]=3.45L/min). The athlete completed four 20-km handcycling TTs on a Cyclus II ergometer under controlled laboratory conditions following the ingestion of 2, 4, and 6 mg/kg CAF or placebo (PLA). Blood lactate concentration, power output, arousal, and ratings of perceived exertion were recorded. Ingestion of 2, 4, and 6 mg/kg CAF resulted in a 2%, 1.5%, and 2.7% faster TT compared with PLA (37:40 min:s). The participant’s blood lactate concentration increased throughout all trials and was greater during CAF compared with PLA. There were no obvious differences in ratings of perceived exertion between trials despite different performance times. Baseline arousal scores differed between PLA and 4 mg/kg CAF (1 = low), and 2 and 6 mg/kg CAF (3 = moderate). Arousal increased at each time point following the ingestion of 4 and 6 mg/kg CAF. The largest CAF dose resulted in a positive pacing strategy, which, when combined with an end spurt, resulted in the fastest TT. CAF improved 20-km TT performance of an elite male paratriathlete, which may be related to greater arousal and an increased power output for a given rating of perceived exertion.

Graham-Paulson and Goosey-Tolfrey are with the Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom. Perret is with the Swiss Paraplegic Centre, Institute of Sport Medicine, Nottwil, Switzerland.

Address author correspondence to Victoria Goosey-Tolfrey at v.l.tolfrey@lboro.ac.uk.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • AstorinoT.A.CottrellT.LozanoA.T.Aburto-PrattK. & DuhonJ. (2012). Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiology & Behavior 106211217. PubMed doi:10.1016/j.physbeh.2012.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BellD.G. & McLellanT.M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology 9312271234. PubMed doi:10.1152/japplphysiol.00187.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlackC.D.WaddellD.E. & GonglachA.R. (2015). Caffeine’s ergogenic effects on cycling: Neuromuscular and perceptual factors. Medicine & Science in Sports & Exercise 4711451158. PubMed doi:10.1249/MSS.0000000000000513

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BorgG. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.

  • BurkeL.M. (2008). Caffeine and sports performance. Applied Physiology Nutrition and Metabolism 3313191334. PubMed doi:10.1139/H08-130

  • CollompK.AhmaidiS.ChatardJ.C.AudranM. & PréfautC. (1992). Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. European Journal of Applied Physiology 64377380. doi:10.1007/BF00636227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DrustB.WaterhouseJ.AtkinsonG.EdwardsB. & ReillyT. (2005). Circadian rhythms in sports performance-an update. Chronobiology International 222144. PubMed doi:10.1081/CBI-200041039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FischerG.FigueiredoP. & ArdigòL.P. (2015). Physiological performance determinants of a 22-km handbiking time trial. International Journal of Sports Physiology and Performance 10(8) 965971. PubMed doi:10.1123/ijspp.2014-0429

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FlueckJ.L.LienertM.SchaufelbergerF.KrebsJ. & PerretC. (2015). Ergogenic effects of caffeine consumption in a 3 min all-out arm crank test in paraplegic and tetraplegic compared to able-bodied individuals. International Journal of Sport Nutrition and Exercise Metabolism 25(6) 584593. PubMed doi:10.1123/ijsnem.2015-0090

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FlueckJ.L.MettlerS. & PerretC. (2014). Influence of caffeine and sodium citrate ingestion on 1500 m exercise performance in elite wheelchair athlete: A pilot study. International Journal of Sport Nutrition and Exercise Metabolism 24(3) 296304. PubMed doi:10.1123/ijsnem.2013-0127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosey-TolfreyV.L.KeilM.Brooke-WavellK. & de GrootS. (2016). A comparison of methods for the estimation of body composition in highly trained wheelchair games players. International Journal of Sports Medicine 37799806. PubMed doi:10.1055/s-0042-104061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GrahamT.E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports Medicine 31785807.

  • GrahamT.E. & SprietL.L. (1995). Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. Journal of Applied Physiology 78(3) 867874. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham-PaulsonT.S.PaulsonT.A.W.PerretC.TolfreyK.CorderyP. & Goosey-TolfreyV.L. (2016a). Spinal cord injury level influences acute plasma caffeine responses. Medicine & Science in Sports & Exercise 49(2) 363370. doi:10.1249/MSS.0000000000001108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham-PaulsonT.S.PerretC. & Goosey-TolfreyV.L. (2016b). Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients 8(7) 393. doi:10.3390/nu8070393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham-PaulsonT.S.PerretC.SmithB.CroslandJ. & Goosey-TolfreyV.L. (2015a). Nutritional supplement habits of athletes with an impairment and their sources of information. International Journal of Sport Nutrition and Exercise Metabolism 25(4) 387395. doi:10.1123/ijsnem.2014-0155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham-PaulsonT.S.PerretC.WatsonP. & Goosey-TolfreyV.L. (2015b). Improvement in sprint performance in wheelchair sportsmen with caffeine supplementation. International Journal of Sports Physiology and Performance 11(2) 214220. doi:10.1123/ijspp.2015-0073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JacobsP.L. & NashM.S. (2004). Exercise recommendations for individuals with spinal cord injury. Sports Medicine 34(11) 727751. PubMed doi:10.2165/00007256-200434110-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KovacsE.M.R.StegenJ.H.C.H. & BrounsF. (1998). Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. Journal of Applied Physiology 85709715. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNaughtonL.R.LovellR.J.SieglerJ.MidgleyA.W.MooreL. & BentleyD.J. (2008). The effects of caffeine ingestion on time trial cycling performance. International Journal of Sports Physiology and Performance 3157163. PubMed doi:10.1123/ijspp.3.2.157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MitsumotoH.DeBoerG.E.BungeG.AndrishJ.T.TetzlaffJ.E. & CruseP. (1990). Fiber-type specific caffeine sensitivities in normal human skinned muscle fibers. Anesthesiology 725054. PubMed doi:10.1097/00000542-199001000-00010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PandolfK.B.BillingsD.S.DroletL.L.PimentalN.A. & SawkaM.N. (1984). Differentiated ratings of perceived exertion and various physiological responses during prolonged upper and lower body exercise. European Journal of Applied Physiology and Occupational Physiology 53511. doi:10.1007/BF00964681

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PerretC. (2015). Elite-adapted wheelchair sports performance: A systematic review. Disability and Rehabilitation 2719. doi:10.3109/09638288.2015.1095951

    • Search Google Scholar
    • Export Citation
  • SchantzP.SjöbergB.WidesbeckA. & EkblomB. (1997). Skeletal muscle of trained and untrained paraplegics and tetraplegics. Acta Physiologica Scandinavica 1613139. PubMed doi:10.1046/j.1365-201X.1997.201371000.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SvebakS. & MurgatroydS. (1985). Metamotivational dominance: A multimethod validation of reversal theory constructs. Journal of Personality and Social Psychology 48107116. doi:10.1037/0022-3514.48.1.107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WuS.S.PeifferJ.J.BrisswalkterJ.LauW.Y.NosakaK. & AbbissC.R. (2016). Improvement of sprint triathlon performance in trained athletes with positive swim pacing. International Journal of Sports Physiology and Performance 11(8) 10241028. PubMed doi:10.1123/ijspp.2015-0580

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 59 59 16
Full Text Views 22 22 3
PDF Downloads 13 13 0
Altmetric Badge
PubMed
Google Scholar