Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Coffee is one of the most consumed beverages in the world, and it can improve insulin sensitivity, stimulating glucose uptake in skeletal muscle when adequate carbohydrate intake is observed. The aim of this review is to analyze the effects of coffee and coffee components on muscle glycogen metabolism. A literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis, and seven studies were included, that explored the effects of coffee components on various substances and signaling proteins. In one of the studies with humans, caffeine was shown to increase glucose levels, Ca2+/calmodulin-dependent protein kinase phosphorylation, glycogen resynthesis rates, and glycogen accumulation after exercise. After intravenous injection of caffeine in rats, caffeine increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and glucose transport. In in vitro studies, caffeine raised AMPK and ACC phosphorylation, increasing glucose transport activity and reducing energy status in rat muscle cells. Cafestol and caffeic acid increased insulin secretion in rat beta cells and glucose uptake into human muscle cells. Caffeic acid also increased AMPK and ACC phosphorylation, reducing the energy status and increasing glucose uptake in rat muscle cells. Chlorogenic acid did not show any positive or negative effect. The findings from this review must be taken with caution due to the limited number of studies on the subject. In conclusion, various coffee components had a neutral or positive role in the metabolism of glucose and muscle glycogen, whereas no detrimental effect was described. Coffee beverages should be tested as an option for athletes’ glycogen recovery.

Loureiro is with Health Sciences Postgraduate Program, Laboratório de Bioquímica da Nutrição, Universidade de Brasília, Brasília, Brasil. Reis and da Costa are with the Laboratório de Bioquímica da Nutrição, Dept. of Nutrition, Universidade de Brasília, Brasília, Brasil.

Address author correspondence to Laís Monteiro Rodrigues Loureiro at laismonteirorp@hotmail.com.
  • Abbott, M.J., Edelman, A.M., & Turcotte, L.P. (2009). CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 297(6), 1724–1732. PubMed ID: 19812359 doi:10.1152/ajpregu.00179.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnaud, M.J. (1987). The pharmacology of caffeine. Progress in Drug Research, 31, 273–313. PubMed ID: 3326033 doi:10.1007/978-3-0348-9289-6_9

    • Search Google Scholar
    • Export Citation
  • Bassoli, B.K., Cassolla, P., Borba-Murad, G.R., Constantin, J., Salgueiro-Pagadigorria, C.L., Bazotte, R.B., …de Souza, H.M. (2008). Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: Effects on hepatic glucose release and glycaemia. Cell Biochemistry and Function, 26, 320–328. PubMed ID: 17990295 doi:10.1002/cbf.1444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battram, D.S., Arthur, R., Weekes, A., & Graham, T.E. (2006). The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men. The Journal of Nutrition, 136(5), 1276–1280. PubMed ID: 16614416 doi:10.1093/jn/136.5.1276. Retrieved from http://jn.nutrition.org/content/136/5/1276.full.pdf+html

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beam, J.R., Gibson, A.L., Kerksick, C.M., Conn, C.A., White, A.C., & Mermier, C.M. (2015). Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations. Nutrition, 31(2), 292–297. PubMed ID: 25592006 doi:10.1016/j.nut.2014.07.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beelen, M., Burke, L.M., Gibala, M.J., & van Loon, L.J.C. (2010). Nutritional strategies to promote postexercise recovery.pdf. International Journal of Sport Nutrition and Exercise Metabolism, 20(6), 515–532. PubMed ID: 21116024 doi:10.1123/ijsnem.20.6.515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beelen, M., Van Kranenburg, J., Senden, J.M., Kuipers, H., & Van Loon, L.J.C. (2012). Impact of caffeine and protein on postexercise muscle glycogen synthesis. Medicine & Science in Sports & Exercise, 44, 692–700. PubMed ID: 21986807 doi:10.1249/MSS.0b013e31823a40ef

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, D.R., Funai, K., Schweitzer, G.G., & Cartee, G.D. (2009). A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism, 296(5), E993–E1002. PubMed ID: 19190254 doi:10.1152/ajpendo.91003.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, J., & Sawers, S.J.A. (1983). The absolute bioavailability of caffeine in man. European Journal of Clinical Pharmacology, 24(1), 93–98. PubMed ID: 6832208 doi:10.1007/BF00613933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blum, J., Lemaire, B., & Lafay, S. (2007). Effect of a green decaffeinated coffee extract on glycaemia: A pilot prospective clinical study. Nutrafoods, 6(3), 13–17.

    • Search Google Scholar
    • Export Citation
  • Bonati, M., Latini, R., Galletti, F., Young, J.F., Tognoni, G., & Garattini, S. (1982). Caffeine disposition after oral doses. Clinical Pharmacology and Therapeutics, 32(1), 98–106. PubMed ID: 7083737 doi:10.1038/clpt.1982.132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brachtel, D., & Richter, E. (1992). Absolute bioavailability of caffeine from a tablet formulation. Journal of Hepatology, 16(3), 385. PubMed ID: 1487618 doi:10.1016/S0168-8278(05)80676-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burke, L.M., van Loon, L.J.C., & Hawley, J.A. (2016). Post-exercise muscle glycogen resynthesis in humans. Journal of Applied Physiology, 122(5), 1055–1067. PubMed ID: 27789774 doi:10.1152/japplphysiol.00860.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, N.D., Richardson, D.L., Thie, J., & Taylor, R. (2017). Coffee ingestion enhances one-mile running race performance. International Journal of Sports Physiology and Performance, 1–20. PubMed ID: 29140142 doi:10.1123/ijspp.2017-0456

    • Search Google Scholar
    • Export Citation
  • Close, G., Hamilton, L., Philp, A., Burke, L., & Morton, J. (2016). New strategies in sport nutrition to increase exercise performance. Free Radical Biology and Medicine, 98, 144–158. PubMed ID: 26855422 doi:10.1016/j.freeradbiomed.2016.01.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirks-Naylor, A.J. (2015). The benefits of coffee on skeletal muscle. Life Sciences, 143, 182–186. PubMed ID: 26546720 doi:10.1016/j.lfs.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dórea, J.G., & Da Costa, T.H.M. (2005). Is coffee a functional food? The British Journal of Nutrition, 93(6), 773–782. PubMed ID: 16022745 doi:10.1079/BJN20051370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egawa, T., Hamada, T., Kameda, N., Karaike, K., Ma, X., Masuda, S., … Hayashi, T. (2009). Caffeine acutely activates 5’adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metabolism: Clinical and Experimental, 58(11), 1609–1617 doi:10.1016/j.metabol.2009.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egawa, T., Hamada, T., Ma, X., Karaike, K., Kameda, N., Masuda, S., … Hayashi, T. (2011). Caffeine activates preferentially a1-isoform of 5’AMP-activated protein kinase in rat skeletal muscle. Acta Physiologica, 201(2), 227–238. PubMed ID: 21241457 doi:10.1111/j.1748-1716.2010.02169.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egawa, T., Tsuda, S., Ma, X., Hamada, T., & Hayashi, T. (2011). Caffeine modulates phosphorylation of insulin receptor substrate-1 and impairs insulin signal transduction in rat skeletal muscle. Journal of Applied Physiology, 111(6), 1629–1636. PubMed ID: 21940847 doi:10.1152/japplphysiol.00249.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farah, A., & Donangelo, C.M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plants Physiology, 18(1), 23–36 doi:10.1590/S1677-04202006000100003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frame, S., & Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. The Biochemical Journal, 359, 1–16. PubMed ID: 11563964 doi:10.1042/bj3590001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs, C.J., Gonzalez, J.T., Beelen, M., Cermak, N.M., Smith, F.E., Thelwall, P.E., … van Loon, L.J.C. (2016). Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion when compared to glucose ingestion in trained athletes. Journal of Applied Physiology, 120(11), 1328–1334. PubMed ID: 27013608 doi:10.1152/japplphysiol.01023.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujii, N., Jessen, N., & Goodyear, L. (2006). AMP-activated protein kinase and the regulation of glucose transport. American Journal of Physiology Endocrinology and Metabolism, 291(40), E867–E877 doi:10.1152/ajpendo.00207.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein, E.R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., … Antonio, J. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition, 7(1), 5. PubMed ID: 20205813 doi:10.1186/1550-2783-7-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonthier, M.-P., Verny, M.-A., Besson, C., Rémésy, C., & Scalbert, A. (2003). Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. The Journal of Nutrition, 133(6), 1853–1859. PubMed ID: 12771329 doi:10.1093/jn/133.6.1853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, T.E., Sathasivam, P., Rowland, M., Marko, N., Greer, F., & Battram, D. (2001). Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test. Canadian Journal of Physiology and Pharmacology, 79(7), 559–565. PubMed ID: 11478588 doi:10.1139/y01-026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harland, B.F. (2000). Caffeine and nutrition. Nutrition, 16(7-8), 522–526. PubMed ID: 10906543 doi:10.1016/S0899-9007(00)00369-5

  • Higgins, S., Straight, C.R., & Lewis, R.D. (2016). The effects of pre-exercise caffeinated-coffee ingestion on endurance performance: An evidence-based review. International Journal of Sport Nutrition and Exercise Metabolism, 26, 221–239. PubMed ID: 26568580 doi:10.1123/ijsnem.2015-0147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinkley, J.M., Ferey, J.L., Brault, J.J., Smith, C.A.S., Gilliam, L.A.A., & Witczak, C.A. (2014). Constitutively active CaMKKα stimulates skeletal muscle glucose uptake in insulin-resistant mice in vivo. Diabetes, 63(1), 142–151. PubMed ID: 24101676 doi:10.2337/db13-0452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ivy, J.L., & Kuo, C.H. (1998). Regulation of Glut 4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiologica Scandinavica, 162, 295–304. PubMed ID: 9578375 doi:10.1046/j.1365-201X.1998.0302e.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentjens, R., & Jeukendrup, A.E. (2003). Determinants of post-exercise glycogen synthesis during short term recovery. Sports Medicine, 33(2), 117–144. PubMed ID: 12617691 doi:10.2165/00007256-200333020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellbye, F.B., Jeppesen, P.B., Hermansen, K., & Gregersen, S. (2015). Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: Studies in vitro. Journal of Natural Products, 78(10), 2447–2451. PubMed ID: 26465380 doi:10.1021/acs.jnatprod.5b00481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement (reprinted from annals of internal medicine). Physical Therapy, 89(9), 873–880. PubMed ID: 19723669.

    • Search Google Scholar
    • Export Citation
  • Mohr, M., Nielsen, J.J., & Bangsbo, J. (2011). Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. Journal of Applied Physiology, 111(5), 1372–1379. PubMed ID: 21836046 doi:10.1152/japplphysiol.01028.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, D.R. (2015). Nutrition to support recovery from endurance exercise. Current Sports Medicine Reports, 14(4), 294–300. PubMed ID: 26166054 doi:10.1249/JSR.0000000000000180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, J., Brozinick, J.T., Valladares, O., Bucan, M., & Birnbaum, M.J. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell, 7(5), 1085–1094. PubMed ID: 11389854 doi:10.1016/S1097-2765(01)00251-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen, J.N., Derave, W., Kristiansen, S., Ralston, E., Ploug, T., & Richter, E.A. (2001). Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. Journal of Physiology, 531(3), 757–769. PubMed ID: 11251056 doi:10.1111/j.1469-7793.2001.0757h.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuhu, A.A. (2014). Bioactive micronutrients in coffee: Recent analytical approaches for characterization and quantification. ISRN Nutrition, 2014, 1–13. PubMed ID: 24967266 doi:10.1155/2014/384230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connell, S.E., & Zurzola, F.J. (1984). Rapid quantitative liquid chromatographic determination of caffeine levels in plasma after oral dosing. Journal of Pharmaceutical Sciences, 73(7), 1009–1011. PubMed ID: 6470942 doi:10.1002/jps.2600730742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedersen, D.J., Lessard, S.J., Coffey, V.G., Churchley, E.G., Wootton, A.M., Ng, T., …Hawley, J.A. (2008). High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. Journal of Applied Physiology, 105(1), 7–13. PubMed ID: 18467543 doi:10.1152/japplphysiol.01121.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D.L., & Clarke, N.D. (2016). Effect of coffee and caffeine ingestion on resistance exercise performance. Journal of Strength and Conditioning Research, 30(10), 2892–2900. PubMed ID: 26890974 doi:10.1519/JSC.0000000000001382

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slivka, D., Hailes, W., Cuddy, J., & Ruby, B. (2008). Caffeine and carbohydrate supplementation during exercise when in negative energy balance: Effects on performance, metabolism, and salivary cortisol. Applied Physiology, Nutrition, and Metabolism, 33, 1079–1085. PubMed ID: 19088765 doi:10.1139/H08-093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spriet, L.L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44, 175–184. PubMed ID: 25355191 doi:10.1007/s40279-014-0257-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stapleton, D., Mitchelhill, K.I., Gao, G., Widmer, J., Michell, B.J., Teh, T., … Kemp, B.E. (1996). Mammalian AMP-activated protein kinase subfamily. The Journal of Biological Chemistry, 271(12), 611–614. PubMed ID: 8557660 doi:10.1074/jbc.271.2.611

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C., Higham, D., Close, G.L., & Morton, J.P. (2011). The effect of adding caffeine to postexercise carbohydrate feeding on subsequent high-intensity interval-running capacity compared with carbohydrate alone. International Journal of Sport Nutrition & Exercise Metabolism, 21(5), 410–416. PubMed ID: 21832305 doi:10.1123/ijsnem.21.5.410 Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=sph&AN=66240259&site=ehost-live

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teekachunhatean, S., Tosri, N., Rojanasthien, N., Srichairatanakool, S., & Sangdee, C. (2013). Pharmacokinetics of caffeine following a single administration of coffee enema versus oral coffee consumption in healthy male subjects. ISRN Pharmacology, 2013, 1–7. PubMed ID: 23533801 doi:10.1155/2013/147238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thong, F.S.L., Derave, W., Kiens, B., Graham, T.E., Ursø, B., Wojtaszewski, J.F.P., …Richter, E.A. (2002). Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes, 51(3), 583–590. PubMed ID: 11872654 doi:10.2337/diabetes.51.3.583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tousch, D., Lajoix, A.D., Hosy, E., Azay-Milhau, J., Ferrare, K., Jahannault, C., …Petit, P. (2008). Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochemical and Biophysical Research Communications, 377(1), 131–135. PubMed ID: 18834859 doi:10.1016/j.bbrc.2008.09.088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trommelen, J., Beelen, M., Pinckaers, P.J.M., Senden, J.M., Cermak, N.M., & Van Loon, L.J.C. (2016). Fructose coingestion does not accelerate postexercise muscle glycogen repletion. Medicine & Science in Sports & Exercise, 48(5), 907–912. PubMed ID: 26606271 doi:10.1249/MSS.0000000000000829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, S., Egawa, T., Kitani, K., Oshima, R., Ma, X., & Hayashi, T. (2015). Caffeine and contraction synergistically stimulate 5 0 -AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Physiology Research, 3(10), 1–12.

    • Search Google Scholar
    • Export Citation
  • Tsuda, S., Egawa, T., Ma, X., Oshima, R., Kurogi, E., & Hayashi, T. (2012). Coffee polyphenol caffeic acid but not chlorogenic acid increases 5’AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Journal of Nutritional Biochemistry, 23(11), 1403–1409. PubMed ID: 22227267 doi:10.1016/j.jnutbio.2011.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Upadhyay, R., & Rao, L.J.M. (2013). An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities. Critical Reviews in Food Science and Nutrition, 53(9), 968–984. PubMed ID: 23768188 doi:10.1080/10408398.2011.576319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Urgert, R., & Katan, M.B. (1996). The cholesterol-raising factor from coffee beans. Journal of the Royal Society of Medicine, 89(11), 618–623. PubMed ID: 9135590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C., & Rollo, I. (2015). Carbohydrate nutrition and team sport performance. Sports Medicine, 45, 13–22. PubMed ID: 26553494 doi:10.1007/s40279-015-0399-3

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 479 479 100
Full Text Views 39 39 16
PDF Downloads 19 19 7