Pitfalls of Conducting and Interpreting Estimates of Energy Availability in Free-Living Athletes

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

The human body requires energy for numerous functions including, growth, thermogenesis, reproduction, cellular maintenance, and movement. In sports nutrition, energy availability (EA) is defined as the energy available to support these basic physiological functions and good health once the energy cost of exercise is deducted from energy intake (EI), relative to an athlete’s fat-free mass (FFM). Low EA provides a unifying theory to link numerous disorders seen in both female and male athletes, described by the syndrome Relative Energy Deficiency in Sport, and related to restricted energy intake, excessive exercise or a combination of both. These outcomes are incurred in different dose–response patterns relative to the reduction in EA below a “healthy” level of ∼45 kcal·kg FFM−1·day−1. Although EA estimates are being used to guide and monitor athletic practices, as well as support a diagnosis of Relative Energy Deficiency in Sport, problems associated with the measurement and interpretation of EA in the field should be explored. These include the lack of a universal protocol for the calculation of EA, the resources needed to achieve estimates of each of the components of the equation, and the residual errors in these estimates. The lack of a clear definition of the value for EA that is considered “low” reflects problems around its measurement, as well as differences between individuals and individual components of “normal”/“healthy” function. Finally, further investigation of nutrition and exercise behavior including within- and between-day energy spread and dietary characteristics is warranted since it may directly contribute to low EA or its secondary problems.

Burke and Lundy are with Sports Nutrition, Australian Institute of Sport, Bruce, Australian Capital Territory, Australia; and the Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia. Fahrenholtz and Melin are with the Dept. of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.

Address author correspondence to Louise M. Burke at louise.burke@ausport.gov.au.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • AbelM.G.HannonJ.C.SellK.LillieT.ConlinG. & AndersonD. (2008). Validation of the Kenz Lifecorder EX and ActiGraph GT1M accelerometers for walking and running in adults. Applied Physiology Nutrition and Metabolism 33(6) 11551164. doi:10.1139/h08-103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AinsworthB.E.HaskellW.L.WhittM.C.IrwinM.L.SwartzA.M.StrathS.J.LeonA.S. (2000). Compendium of physical activities: An update of activity codes and MET intensities. Medicine & Science in Sports & Exercise 32(Suppl. 9) 498504. PubMed ID: 10993420 doi:10.1097/00005768-200009001-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AretaJ.L.BurkeL.M.CameraD.M.WestD.W.CrawshayS.MooreD.R.CoffeyV.G. (2014). Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. American Journal of Physiology: Endocrinology and Metabolism 306(8) E989E997. PubMed ID: 24595305 doi:10.1152/ajpendo.00590.2013

    • Search Google Scholar
    • Export Citation
  • BarronE.SokoloffN.C.MaffazioliG.D.AckermanK.E.WoolleyR.HolmesT.M.MisraM. (2016). Diets high in fiber and vegetable protein are associated with low lumbar bone mineral density in young athletes with oligoamenorrhea. Journal of the Academy of Nutrition and Dietetics 116(3) 481489. PubMed ID: 26686817 doi:10.1016/j.jand.2015.10.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlackA.E. (2000). Critical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate. A practical guide to its calculation, use and limitations. International Journal of Obesity and Related Metabolic Disorders 24(9) 11191130. PubMed ID: 11033980 doi:10.1038/sj.ijo.0801376

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlackK.SlaterJ.BrownR.C. & CookeR. (2018). Low energy availability, plasma lipids, and hormonal profiles of recreational athletes. Journal of Strength & Conditioning Research. Manuscript submitted for publication. doi:10.1519/JSC.0000000000002540

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BraakhuisA.J.MeredithK.CoxG.R.HopkinsW.G. & BurkeL.M. (2003). Variability in estimation of self-reported dietary intake data from elite athletes resulting from coding by different sports dietitians. International Journal of Sports Nutrition and Exercise Metabolism 13(2) 152165. doi:10.1123/ijsnem.13.2.152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BraunH.von Andrian-WerburgJ.SchänzerW. & ThevisM. (2018). Nutrition status of young elite female German football players. Pediatric Exercise Science 30(1) 157167. doi:10.1123/pes.2017-0072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrownM.A.HowatsonG.QuinE.ReddingE. & StevensonE.J. (2017). Energy intake and energy expenditure of pre-professional female contemporary dancers. PLoS ONE 12(2) e0171998. PubMed ID: 28212449 doi:10.1371/journal.pone.0171998

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BurkeL.M.CloseG.L.LundyB.MoosesM.MortonJ.P. & TenfordeA.S. (2018). Relative energy deficiency in sport (RED-S) in male athletes: A commentary on its presentation among selected groups of male athletes. International Journal of Sports Nutrition and Exercise Metabolism.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BurkeL.M.CoxG.R.CummingsN.K. & DesbrowB. (2001). Guidelines for daily carbohydrate intake: Do athletes achieve them? Sports Medicine 31(4) 267299. PubMed ID: 11310548 doi:10.2165/00007256-200131040-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CaplingL.BeckK.L.GiffordJ.A.SlaterG.FloodV.M. & O’ConnorH. (2017). Validity of dietary assessment in athletes: A systematic review. Nutrients 9(12) 1313. doi:10.3390/nu9121313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChattertonJ.M. & PetrieT.A. (2013). Prevalence of disordered eating and pathogenic weight control behaviors among male collegiate athletes. Eating Disorders 21(4) 328341. PubMed ID: 23767673 doi:10.1080/10640266.2013.797822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cialdella-KamL.GuebelsC.P.MaddalozzoG.F. & ManoreM.M. (2014). Dietary intervention restored menses in female athletes with exercise-associated menstrual dysfunction with limited impact on bone and muscle health. Nutrients 6(8) 30183039. PubMed ID: 25090245 doi:10.3390/nu6083018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CummingD.C. & CummingC.E. (2001). Estrogen replacement therapy and female athletes: Current issues. Sports Medicine 3110251031. PubMed ID: 11735684 doi:10.2165/00007256-200131150-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De SouzaM.J.NattivA.JoyE.MisraM.WilliamsN.I.MallinsonR.J.MathesonG. (2014). 2014 Female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st International conference held in San Francisco, California, May 2012 and 2nd international conference held in Indianapolis, Indiana, May 2013. British Journal of Sports Medicine 48(4) 289. PubMed ID: 24463911 doi:10.1136/bjsports-2013-093218

    • Search Google Scholar
    • Export Citation
  • DeutzR.C.BenardotD.MartinD.T. & CodyM.M. (2000). Relationship between energy deficits and body composition in elite female gymnasts and runners. Medicine & Science in Sports & Exercise 32(3) 659668. PubMed ID: 10731010 doi:10.1097/00005768-200003000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle-LucasA.F.AkersJ.D. & DavyB.M. (2010). Energetic efficiency, menstrual irregularity, and bone mineral density in elite professional female ballet dancers. Journal of Dance Medicine & Science 14(4) 146154. PubMed ID: 21703085

    • Search Google Scholar
    • Export Citation
  • FahrenholtzI.L.SjödinA.BenardotD.TornbergÅ.B.SkoubyS.FaberJ.MelinA.K. (2018). Within-day energy deficiency and reproductive function in female endurance athletes. Scandinavian Journal of Medicine & Science in Sports 28(3) 11391146. PubMed ID: 29205517 doi:10.1111/sms.13030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FilaireE.RouveixM.PannafieuxC. & FerrandC. (2007). Eating attitudes, perfectionism and body-esteem of elite male judoists and cyclists. Journal of Sports Science & Medicine 6(1) 5057. PubMed ID: 24149224

    • Search Google Scholar
    • Export Citation
  • GartheI.RaastadT.RefsnesP.E. & Sundgot-BorgenJ. (2013). Effect of nutritional intervention on body composition and performance in elite athletes. European Journal of Sports Science 13(3) 295303. doi:10.1080/17461391.2011.643923

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GibbsJ.C.WilliamsN.I. & De SouzaM.J. (2013a). Prevalence of individual and combined components of the female athlete triad. Medicine & Science in Sports & Exercise 45(5) 985996. doi:10.1249/MSS.0b013e31827e1bdc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GibbsJ.C.WilliamsN.I.MallinsonR.J.ReedJ.L.RickardA.D. & De SouzaM.J. (2013b). Effect of high dietary restraint on energy availability and menstrual status. Medicine & Science in Sports & Exercise 45(9) 17901797. doi:10.1249/MSS.0b013e3182910e11

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GibbsJ.C.WilliamsN.I.ScheidJ.L.ToombsR.J. & De SouzaM.J. (2011). The association of a high drive for thinness with energy deficiency and severe menstrual disturbances: Confirmation in a large population of exercising women. International Journal of Sports Nutrition and Exercise Metabolism 21(4) 280290. doi:10.1123/ijsnem.21.4.280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoldbergG.R.BlackA.E.JebbS.A.ColeT.J.MurgatroydP.R.CowardW.A. & PrenticeA.M. (1991). Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. European Journal of Clinical Nutrition 45(12) 569581. PubMed ID: 1810719

    • Search Google Scholar
    • Export Citation
  • GuebelsC.P.KamL.C.MaddalozzoG.F. & ManoreM.M. (2014). Active women before/after an intervention designed to restore menstrual function: Resting metabolic rate and comparison of four methods to quantify energy expenditure and energy availability. International Journal of Sports Nutrition and Exercise Metabolism 24(1) 3746. doi:10.1123/ijsnem.2012-0165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeikuraI.A.UusitaloA.L.T.StellingwerffT.BerglandD.MeroA.A. & BurkeL.M. (2018). Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. International Journal of Sport Nutrition and Exercise Metabolism 28(4) 19. doi:10.1123/ijsnem.2017-0313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HillR.J. & DaviesP.S. (2001). The validity of self-reported energy intake as determined using the doubly labelled water technique. British Journal of Nutrition 85(4):415430. PubMed ID: 11348556 doi:10.1079/BJN2000281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HiltonL.K. & LoucksA.B. (2000). Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. American Journal of Physiology: Endocrinology and Metabolism 278(1) E43E49. PubMed ID: 10644535 doi:10.1152/ajpendo.2000.278.1.E43

    • Search Google Scholar
    • Export Citation
  • HochA.Z.PajewskiN.M.MoraskiL.CarreraG.F.WilsonC.R.HoffmannR.G.GuttermanD.D. (2009). Prevalence of the female athlete triad in high school athletes and sedentary students. Clinical Journal of Sports Medicine 19(5) 421428. doi:10.1097/JSM.0b013e3181b8c136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HochA.Z.PapanekP.SzaboA.WidlanskyM.E.SchimkeJ.E. & GuttermanD.D. (2011). Association between the female athlete triad and endothelial dysfunction in dancers. Clinical Journal of Sports Medicine 21(2) 119125. doi:10.1097/JSM.0b013e3182042a9a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IhleR. & LoucksA.B. (2004). Dose-response relationships between energy availability and bone turnover in young exercising women. Journal of Bone and Mineral Research 19(8) 12311240. PubMed ID: 15231009 doi:10.1359/JBMR.040410

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JoyE.De SouzaM.J.NattivA.MisraM.WilliamsN.I.MallinsonR.J.BorgenJ.S. (2014). 2014 Female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad. Current Sports Medicine Reports 13(4) 219232. PubMed ID: 25014387 doi:10.1249/JSR.0000000000000077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KingN.A.TremblayA. & BlundellJ.E. (1997). Effects of exercise on appetite control: Implications for energy balance. Medicine & Science in Sports & Exercice 29(8) 10761089. doi:10.1097/00005768-199708000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KoehlerK.AchtzehnS.BraunH.MesterJ. & SchaenzerW. (2013). Comparison of self-reported energy availability and metabolic hormones to assess adequacy of dietary energy intake in young elite athletes. Applied Physiology Nutrition and Metabolism 38(7) 725733. PubMed ID: 23980730 doi:10.1139/apnm-2012-0373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KoehlerK.HoernerN.R.GibbsJ.C.ZinnerC.BraunH.De SouzaM.J.SchaenzerW. (2016). Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. Journal of Sport Sciences 34(20) 19211929. doi:10.1080/02640414.2016.1142109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ŁagowskaK. & KapczukK. (2016). Testosterone concentrations in female athletes and ballet dancers with menstrual disorders. European Journal of Sports Science 16(4) 490497. doi:10.1080/17461391.2015.1034786

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LagowskaK.KapczukK.FriebeZ. & BajerskaJ. (2014a). Effects of dietary intervention in young female athletes with menstrual disorders. Journal of the International Society of Sports 261121.

    • Search Google Scholar
    • Export Citation
  • LagowskaK.KapczukK. & JeszkaJ. (2014b). Nine-month nutritional intervention improves restoration of menses in young female athletes and ballet dancers. Journal of the International Society of Sports Nutrition 11(1) 19. doi:10.1186/1550-2783-11-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson-MeyerD.E.PalmS.BansalA.AustinK.J.HartA.M. & AlexanderB.M. (2012). Influence of running and walking on hormonal regulators of appetite in women. Journal of Obesity 2012730409. PubMed ID: 22619704 doi:10.1155/2012/730409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson-MeyerD.E.WoolfK. & BurkeL. (2018). Assessment of nutrient status in athletes and the need for supplementation. International Journal of Sports Nutrition and Exercise Metabolism 28(2) 139158. doi:10.1123/ijsnem.2017-0338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiebermanJ.L.De SouzaM.J.WagstaffD.A. & WilliamsN.I. (2018). Menstrual disruption with exercise is not linked to an energy availability threshold. Medicine & Science in Sports & Exercise 50(3) 551561. PubMed ID: 29023359 doi:10.1249/MSS.0000000000001451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoucksA. (2015). Commentary 2. Female athlete triad and energy availability. In L. Burke& V. Deakin (Eds.) Clinical sports nutrition (5th ed. pp. 140145). Sydney, Australia: McGraw Hill.

    • Search Google Scholar
    • Export Citation
  • LoucksA.B. (2004). Energy balance and body composition in sports and exercise. Journal of Sports Sciences 22(1) 114. doi:10.1080/0264041031000140518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoucksA.B. (2006). The response of luteinizing hormone pulsatility to 5 days of low energy availability disappears by 14 years of gynecological age. Journal of Clinical Endocrinology & Metabolism 91(8) 31583164. PubMed ID: 16720651 doi:10.1210/jc.2006-0570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoucksA.B. (2014). The female triad: A metabolic phenomenon. Pensar en Movimiento 12123.

  • LoucksA.B. & HeathE.M. (1994). Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. American Journal of Physiology 266R817R823. PubMed ID: 8160876

    • Search Google Scholar
    • Export Citation
  • LoucksA.B.KiensB. & WrightH.H. (2011). Energy availability in athletes. Journal of Sports Sciences 29S7S15. doi:10.1080/02640414.2011.588958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoucksA.B. & ThumaJ.R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. Journal of Clinical Endocrinology & Metabolism 88(1) 297311. PubMed ID: 12519869 doi:10.1210/jc.2002-020369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LoucksA.B.VerdunM. & HeathE.M. (1998). Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. Journal of Applied Physiology 84(1) 3746. PubMed ID: 9451615 doi:10.1152/jappl.1998.84.1.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MarrJ.W. & HeadyJ.A. (1986). Within- and between-person variation in dietary surveys: Number of days needed to classify individuals. Human Nutrition: Applied Nutrition 40(5) 347364. PubMed ID: 3781882

    • Search Google Scholar
    • Export Citation
  • MelinA.TornbergA.B.SkoubyS.FaberJ.RitzC.SjödinA. & Sundgot-BorgenJ. (2014). The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. British Journal of Sports Medicine 48(7) 540545. PubMed ID: 24563388 doi:10.1136/bjsports-2013-093240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MelinA.TornbergÅ.B.SkoubyS.MøllerS.S.FaberJ.Sundgot-BorgenJ. & SjödinA. (2016). Low-energy density and high fiber intake are dietary concerns in female endurance athletes. Scandinavian Journal of Medicine & Science in Sports 26(9) 10601071. PubMed ID: 26148242 doi:10.1111/sms.12516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MelinA.TornbergÅ.B.SkoubyS.MøllerS.S.Sundgot-BorgenJ.FaberJ. & SjödinA. (2015). Energy availability and the female athlete triad in elite endurance athletes. Scandinavian Journal of Medicine & Science in Sports 25(5) 610622. PubMed ID: 24888644 doi:10.1111/sms.12261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MountjoyM.Sundgot-BorgenJ.BurkeL.CarterS.ConstantiniN.LebrunC.LjungqvistA. (2014). The IOC concensus statement: Beyond the female athlete triad--relative energy deficiency in sport (RED-S). British Journal of Sports Medicine 48(7) 491497. PubMed ID: 24620037 doi:10.1136/bjsports-2014-093502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MountjoyM.Sundgot-BorgenJ.BurkeL.CarterS.ConstantiniN.LebrunC.AckermanK. (2015). The IOC relative energy deficiency in sport clinical assessment tool (RED-S CAT). British Journal of Sports Medicine 49(21) 1354. PubMed ID: 26764434 doi:10.1136/bjsports-2015-094873

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MountjoyM.Sundgot-BorgenJ.K.BurkeL.M.AckermanK.E.BlauwetC.ConstantiniN.BudgettR. (2018). IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. International Journal of Sport Nutrition and Exercise Metabolism 28(4) 118. doi:10.1123/ijsnem.2018-0136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MuiaE.N.WrightH.H.OnyweraV.O. & KuriaE.N. (2016). Adolescent elite Kenyan runners are at risk for energy deficiency, menstrual dysfunction and disordered eating. Journal of Sports Sciences 34(7) 598606. PubMed ID: 26153433 doi:10.1080/02640414.2015.1065340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MurakamiH.KawakamiR.NakaeS.NakataY.Ishikawa-TakataK.TanakaS. & MiyachiM. (2016). Accuracy of wearable devices for estimating total energy expenditure: Comparison with metabolic chamber and doubly labeled water method. JAMA Internal Medicine 176(5) 702703. PubMed ID: 26999758 doi:10.1001/jamainternmed.2016.0152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NanaA.SlaterG.J.HopkinsW.G.HalsonS.L.MartinD.T.WestN.P. & BurkeL.M. (2016). Importance of standardized DXA protocol for assessing physique changes in athletes. International Journal of Sport Nutrition and Exercise Metabolism 26259267. PubMed ID: 24458265 doi:10.1123/ijsnem.2013-0111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NattivA.AgostiniR.DrinkwaterB. & YeagerK.K. (1994). The female athlete triad. The inter-relatedness of disordered eating, amenorrhea, and osteoporosis. Clinical Sports Medicine 13(2) 405418.

    • Search Google Scholar
    • Export Citation
  • NattivA.LoucksA.B.ManoreM.M.SanbornC.F.Sundgot-BorgenJ. & WarrenM.P. (2007). American college of sports medicine position stand. The female athlete triad. Medicine & Science in Sports & Exercise 39(10) 18671882. PubMed ID: 17909417 doi:10.1249/mss.0b013e318149f111

    • Search Google Scholar
    • Export Citation
  • OtisC.L.DrinkwaterB.JohnsonM.LoucksA. & WilmoreJ. (1997). American college of sports medicine position stand: The female athlete triad. Medicine & Science in Sports & Exercise 29(5) iix. PubMed ID: 9140913 doi:10.1097/00005768-199705000-00037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PapageorgiouM.Elliott-SaleK.J.ParsonsA.TangJ.C.Y.GreevesJ.P.FraserW.D. & SaleC. (2017). Effects of reduced energy availability on bone metabolism in women and men. Bone 105191199. PubMed ID: 28847532 doi:10.1016/j.bone.2017.08.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PauliS.A. & BergaS.L. (2010). Athletic amenorrhea: Energy deficit or psychogenic challenge? Annals of the New York Academy of Sciences 12053338. PubMed ID: 20840250 doi:10.1111/j.1749-6632.2010.05663.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReedJ.L.BowellJ.L.HillB.R.WilliamsB.A.De SouzaM.J. & WilliamsN.I. (2011). Exercising women with menstrual disturbances consume low energy dense foods and beverages. Applied Physiology Nutrition and Metabolism 36(3) 382394. doi:10.1139/h11-030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReedJ.L.De SouzaM.J. & WilliamsN.I. (2013). Changes in energy availability across the season in Division I female soccer players. Journal of Sports Sciences 31(3) 314324. doi:10.1080/02640414.2012.733019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchaalK.TiollierE.Le MeurY.CasazzaG. & HausswirthC. (2016). Elite synchronized swimmers display decreased energy availability during intensified training. Scandinavian Journal of Medicine & Science in Sports 27(9) 925934. PubMed ID: 27367601 doi:10.1111/sms.12716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchaalK.Van LoanM.D. & CasazzaG.A. (2011). Reduced catecholamine response to exercise in amenorrheic athletes. Medicine & Science in Sports & Exercise 43(1) 3443. PubMed ID: 20508538 doi:10.1249/MSS.0b013e3181e91ece

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaA.M.MatiasC.N.SantosD.A.ThomasD.Bosy-WestphalA.MüllerM.J.SardinhaL.B. (2017). Compensatory changes in energy balance regulation over one athletic season. Medicine & Science in Sports & Exercise 49(6) 12291235. PubMed ID: 28121799 doi:10.1249/MSS.0000000000001216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaM.R. & PaivaT. (2015). Low energy availability and low body fat of female gymnasts before an international competition. European Journal of Sports Science 15(7) 591599. doi:10.1080/17461391.2014.969323

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaM.R. & PaivaT. (2017). Comparison of body composition and nutrients’ deficiencies between Portuguese rink-hockey players. European Journal of Pediatrics 176(1) 4150. PubMed ID: 27837349 doi:10.1007/s00431-016-2803-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SilvaM.G.SilvaH.H. & PaivaT. (2018). Sleep duration, body composition, dietary profile and eating behaviours among children and adolescents: A comparison between Portuguese acrobatic gymnasts. European Journal of Pediatrics 177(6) 815825. PubMed ID: 29502302 doi:10.1007/s00431-018-3124-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StellingwerffT. (2018). Case-study: Body composition periodization in an olympic-level female middle-distance runner over a 9-year career. International Journal of Sport Nutrition and Exercise Metabolism. 24(8) 16. doi:10.1123/ijsnem.2017-0312

    • Search Google Scholar
    • Export Citation
  • StubbsR.J.HughesD.A.JohnstoneA.M.WhybrowS.HorganG.W.KingN. & BlundellJ. (2004). Rate and extent of compensatory changes in energy intake and expenditure in response to altered exercise and diet composition in humans. American Journal of Physiology. Regulatory Integrative and Comparative Physiology 286(2) R350R358. doi:10.1152/ajpregu.00196.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sundgot-BorgenJ. & TorstveitM.K. (2004). Prevalence of eating disorders in elite athletes is higher than in the general population. Clinical Journal of Sports Medicine 14(1) 2532. doi:10.1097/00042752-200401000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TiptonK.D. (2015). Nutritional support for exercise-induced injuries. Sports Medicine 45(Suppl. 1) S93S104. doi:10.1007/s40279-015-0398-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TorstveitM.K.FahrenholtzI.StenqvistT.B.SyltaØ. & MelinA. (2018). Within-day energy deficiency and metabolic perturbation in male endurance athletes. International Journal of Sport Nutrition and Exercise Metabolism 6128. doi:10.1123/ijsnem.2017-0337

    • Search Google Scholar
    • Export Citation
  • TorstveitM.K. & Sundgot-BorgenJ. (2005). The female athlete triad: Are elite athletes at increased risk? Medicine & Science in Sports & Exercise 37(2) 184193. PubMed ID: 15692312 doi:10.1249/01.MSS.0000152677.60545.3A

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanheestJ.L.RodgersC.D.MahoneyC.E. & De SouzaM.J. (2014). Ovarian suppression impairs sport performance in junior elite female swimmers. Medicine & Science in Sports & Exercise 46(1) 156166. PubMed ID: 23846160 doi:10.1249/MSS.0b013e3182a32b72

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VinerR.T.HarrisM.BerningJ.R. & MeyerN.L. (2015). Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. International Journal of Sports Nutrition and Exercise Metabolism 25(6) 594602. doi:10.1123/ijsnem.2015-0073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WesterterpK. (2003). Energy metabolism and body composition: General principles. European Respiratory Monograph 24110.

  • WilliamsN.I.LeidyH.J.HillB.R.LiebermanJ.L.LegroR.S. & De SouzaM.J. (2015). Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. American Journal of Physiology: Endocrinology and Metabolism 308(1) E29E39. PubMed ID: 25352438 doi:10.1152/ajpendo.00386.2013

    • Search Google Scholar
    • Export Citation
  • WoodruffS.J. & MelocheR.D. (2013). Energy availability of female varsity volleyball players. International Journal of Sports Nutrition and Exercise Metabolism 23(1) 2430. doi:10.1123/ijsnem.23.1.24

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 453 453 117
Full Text Views 34 34 8
PDF Downloads 29 29 7
Altmetric Badge
PubMed
Google Scholar
Cited By