Within-Day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes

Click name to view affiliation

Monica Klungland Torstveit University of Agder

Search for other papers by Monica Klungland Torstveit in
Current site
Google Scholar
PubMed
Close
*
,
Ida Fahrenholtz University of Copenhagen

Search for other papers by Ida Fahrenholtz in
Current site
Google Scholar
PubMed
Close
*
,
Thomas B. Stenqvist University of Agder

Search for other papers by Thomas B. Stenqvist in
Current site
Google Scholar
PubMed
Close
*
,
Øystein Sylta University of Agder

Search for other papers by Øystein Sylta in
Current site
Google Scholar
PubMed
Close
*
, and
Anna Melin University of Copenhagen

Search for other papers by Anna Melin in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMRratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMRratio < 0.90, n = 20) or normal (RMRratio > 0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8–21.8] hr vs. 10.8 [2.5–16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. −1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = −.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

Torstveit, Stenqvist, and Sylta are with the Faculty of Health and Sport Science, Institute of Public Health, Sport & Nutrition, University of Agder, Kristiansand, Norway. Fahrenholtz and Melin are with the Dept. of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.

Address author correspondence to Monica Klungland Torstveit at monica.k.torstveit@uia.no.
  • Collapse
  • Expand
  • Banfi, G., & Dolci, A. (2006). Free testosterone/cortisol ratio in soccer: Usefulness of a categorization of values. Journal of Sports Medicine & Physical Fitness, 46(4), 611.

    • Search Google Scholar
    • Export Citation
  • Benardot, D. (2007). Timing of energy and fluid intake: New concepts for weight control and hydration. ACSM’s Health & Fitness Journal, 11(4), 1319. PubMed ID: 29445663 doi:10.1249/01.FIT.0000281226.23643.de

    • Search Google Scholar
    • Export Citation
  • Benardot, D. (2013). Energy thermodynamics revisited: Energy intake strategies for optimizing athlete body composition and performance. Pensar en Movimiento, 11, 113. doi:10.15517/pensarmov.v11i2.10841

    • Search Google Scholar
    • Export Citation
  • Black, A.E. (2000). Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. International Journal of Obesity, 24(9), 11191130. doi:10.1038/sj.ijo.0801376

    • Search Google Scholar
    • Export Citation
  • Brage, S., Brage, N., Franks, P.W., Ekelund, U., & Wareham, N.J. (2005). Reliability and validity of the combined heart rate and movement sensor Actiheart. European Journal of Clinical Nutrition, 59(4), 561570. doi:10.1038/sj.ejcn.1602118

    • Search Google Scholar
    • Export Citation
  • Carlsohn, A., Scharhag-Rosenberger, F., Cassel, M., & Mayer, F. (2011). Resting metabolic rate in elite rowers and canoeists: Difference between indirect calorimetry and prediction. Annals of Nutrition & Metabolism, 58(3), 239244. doi:10.1159/000330119

    • Search Google Scholar
    • Export Citation
  • Compher, C., Frankenfield, D., Keim, N., & Roth-Yousey, L. (2006). Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. Journal of American Diet Association, 106(6), 881903. doi:10.1016/j.jada.2006.02.009

    • Search Google Scholar
    • Export Citation
  • Crouter, S.E., Churilla, J.R., & Bassett, D.R. (2008). Accuracy of the Actiheart for the assessment of energy expenditure in adults. European Journal of Clinical Nutrition, 62(6), 704711. doi:10.1038/sj.ejcn.1602766

    • Search Google Scholar
    • Export Citation
  • Cunningham, J.J. (1980). A reanalysis of the factors influencing basal metabolic rate in normal adults. The American Journal of Clinical Nutrition, 33(11), 23722374. PubMed ID: 7435418 doi:10.1093/ajcn/33.11.2372

    • Search Google Scholar
    • Export Citation
  • De Pauw, K., Roelands, B., Cheung, S.S., de Geus, B., Rietjens, G., & Meeusen, R. (2013). Guidelines to classify subject groups in sport-science research. International Journal of Sports Physiology and Performance, 8(2), 111122. doi:10.1123/ijspp.8.2.111

    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., Nattiv, A., Joy, E., Misra, M., Williams, N.I., Mallinson, R.J., & Matheson, G. (2014). 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. British Journal of Sports Medicine, 48(4), 289. PubMed ID: 24463911 doi:10.1136/bjsports-2013-093218

    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., West, S.L., Jamal, S.A., Hawker, G.A., Gundberg, C.M., & Williams, N.I. (2008). The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone, 43(1), 140148. doi:10.1016/j.bone.2008.03.013

    • Search Google Scholar
    • Export Citation
  • Deutz, R.C., Benardot, D., Martin, D.E., & Cody, M.M. (2000). Relationship between energy deficits and body composition in elite female gymnasts and runners. Medicine & Science in Sports & Exercise, 32(3), 659668. doi:10.1097/00005768-200003000-00017

    • Search Google Scholar
    • Export Citation
  • Dolan, E., McGoldrick, A., Davenport, C., Kelleher, G., Byrne, B., Tormey, W., & Warrington, G.D. (2012). An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys. Journal of Bone and Mineral Metabolism, 30(5), 534542. doi:10.1007/s00774-012-0354-4

    • Search Google Scholar
    • Export Citation
  • Fahrenholtz, I.L., Sjödin, A., Benardot, D., Tornberg, Å.B., Skouby, S., Faber, J., … Melin, A.K. (2018). Within-day energy deficiency and reproductive function in female endurance athletes. Scandinavian Journal of Medicine & Science in Sports, 18. doi:10.1111/sms.13030

    • Search Google Scholar
    • Export Citation
  • Fuqua, J.S., & Rogol, A.D. (2013). Neuroendocrine alterations in the exercising human: Implications for energy homeostasis. Metabolism, 62(7), 911921. doi:10.1016/j.metabol.2013.01.016

    • Search Google Scholar
    • Export Citation
  • Gibbs, J.C., Williams, N.I., & De Souza, M.J. (2013). Prevalence of individual and combined components of the female athlete triad. Medicine & Science in Sports & Exercise, 45(5), 985996. doi:10.1249/MSS.0b013e31827e1bdc

    • Search Google Scholar
    • Export Citation
  • Goldsmith, R., Joanisse, D.R., Gallagher, D., Pavlovich, K., Shamoon, E., Leibel, R.L., & Rosenbaum, M. (2010). Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(1), 7988. doi:10.1152/ajpregu.00053.2009

    • Search Google Scholar
    • Export Citation
  • Hagmar, M., Berglund, B., Brismar, K., & Hirschberg, A.L. (2013). Body composition and endocrine profile of male Olympic athletes striving for leanness. Clinical Journal of Sport Medicine, 23(3), 197201. doi:10.1097/JSM.0b013e31827a8809

    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., Craig, N.P., & Hawley, J.A. (2000). The bioenergetics of world class cycling. Journal of Science and Medicine in Sport, 3(4), 414433. doi:10.1016/S1440-2440(00)80008-0

    • Search Google Scholar
    • Export Citation
  • Koehler, K., Hoerner, N.R., Gibbs, J.C., Zinner, C., Braun, H., De Souza, M.J., & Schaenzer, W. (2016). Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. Journal of Sports Sciences, 34(20), 19211929. doi:10.1080/02640414.2016.1142109

    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Thuma, J.R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. The Journal of Clinical Endocrinology & Metabolism, 88(1), 297311. doi:10.1210/jc.2002-020369

    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., Verdun, M., & Heath, E. (1998). Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. Journal of Applied Physiology, 84(1), 3746. doi:10.1152/jappl.1998.84.1.37

    • Search Google Scholar
    • Export Citation
  • Melin, A., Tornberg, Å.B., Skouby, S., Møller, S., Sundgot-Borgen, J., Faber, J., & Sjödin, A. (2015). Energy availability and the female athlete triad in elite endurance athletes. Scandinavian Journal of Medicine & Science in Sports, 25(5), 610622. doi:10.1111/sms.12261

    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., & Ljungqvist, A. (2014). The IOC consensus statement: Beyond the female athlete triad--relative energy deficiency in sport (RED-S). British Journal of Sports Medicine, 48(7), 491497. doi:10.1136/bjsports-2014-093502

    • Search Google Scholar
    • Export Citation
  • Nattiv, A., Loucks, A.B., Manore, M.M., Sanborn, C.F., Sundgot-Borgen, J., & Warren, M.P. (2007). American College of Sports Medicine position stand. The female athlete triad. Medicine & Science in Sports & Exercise, 39(10), 18671882. doi:10.1249/mss.0b013e318149f111

    • Search Google Scholar
    • Export Citation
  • Phelain, J.F., Reinke, E., Harris, M.A., & Melby, C.L. (1997). Postexercise energy expenditure and substrate oxidation in young women resulting from exercise bouts of different intensity. The Journal of the American College of Nutrition, 16, 140146.

    • Search Google Scholar
    • Export Citation
  • Phillips, S.M., & Van Loon, L.J. (2011). Dietary protein for athletes: From requirements to optimum adaptation. Journal of Sports Sciences, 29, S29S38. doi:10.1080/02640414.2011.619204

    • Search Google Scholar
    • Export Citation
  • Redman, L.M., Heilbronn, L.K., Martin, C.K., De Jonge, L., Williamson, D.A., Delany, J.P., & Ravussin, E. (2009). Metabolic and behavioral compensations in response to caloric restriction: Implications for the maintenance of weight loss. PloS ONE, 4(2), e4377. doi:10.1371/journal.pone.0004377

    • Search Google Scholar
    • Export Citation
  • Redman, L.M., & Loucks, A.B. (2005). Menstrual disorders in athletes. Sports Medicine, 35(9), 747755. doi:10.2165/00007256-200535090-00002

    • Search Google Scholar
    • Export Citation
  • Reed, G.W., & Hill, J.O. (1996). Measuring the thermic effect of food. The American Journal of Clinical Nutrition, 63(2), 164169. doi:10.1093/ajcn/63.2.164

    • Search Google Scholar
    • Export Citation
  • Scheid, J.L., Williams, N.I., West, S.L., VanHeest, J.L., & De Souza, M.J. (2009). Elevated PYY is associated with energy deficiency and indices of subclinical disordered eating in exercising women with hypothalamic amenorrhea. Appetite, 52(1), 184192. doi:10.1016/j.appet.2008.09.016

    • Search Google Scholar
    • Export Citation
  • Sterling, W.M., Golden, N.H., Jacobsen, M.S., Ornstein, R.M., Hertz, S.M. (2009). Metabolic assessment of menstruating and nonmenstruating normal weight adolescents. International Journal of Eating Disorders, 42, 658663. doi:10.1002/eat.20604

    • Search Google Scholar
    • Export Citation
  • Tenforde, A.S., Barrack, M.T., Nattiv, A., & Fredericson, M. (2016). Parallels with the female athlete triad in male athletes. Sports Medicine, 46(2), 171182. doi:10.1007/s40279-015-0411-y

    • Search Google Scholar
    • Export Citation
  • Thomas, D.T., Erdman, K.A., & Burke, L.M. (2016). Position of the academy of nutrition and dietetics, dietitians of Canada, and the American college of sports medicine: Nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501528. doi:10.1016/j.jand.2015.12.006

    • Search Google Scholar
    • Export Citation
  • Thompson, J., & Manore, M.M. (1996). Predicted and measured resting metabolic rate of male and female endurance athletes. Journal of American Dietetic association, 96(1), 3034. doi:10.1016/S0002-8223(96)00010-7

    • Search Google Scholar
    • Export Citation
  • Wade, G.N., & Jones, J.E. (2004). Neuroendocrinology of nutritional infertility. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(6), R1277R1296. doi:10.1152/ajpregu.00475.2004

    • Search Google Scholar
    • Export Citation
  • Weir, J.B. (1990). New methods for calculating metabolic rate with special reference to protein metabolism. Nutrition, 6(3), 213221.

  • Wilson, G., Hill, J., Sale, C., Morton, J.P., & Close, G.L. (2015). Elite male Flat jockeys display lower bone density and lower resting metabolic rate than their female counterparts: Implications for athlete welfare. Applied Physiology, Nutrition, and Metabolism, 40(12), 13181320. doi:10.1139/apnm-2015-0354

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 864 0 0
Full Text Views 7310 2298 88
PDF Downloads 3685 1268 70