No Difference in Young Adult Athletes’ Resting Energy Expenditure When Measured Under Inpatient or Outpatient Conditions

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Low energy availability can place athletes at increased risk of injury and illness and can be detected by a lower metabolic rate. The lowest metabolic rate is captured at the bedside, after an overnight fast and termed inpatient resting energy expenditure (REE). Measurements done in a laboratory with a shorter overnight fast are termed outpatient REE. Although important to know what the lowest energy expenditure, a bedside measure and/or 12-hr fast is not always practical or logistically possible particularly when you take into account an athlete’s training schedule. The aim of this investigation was to compare a bedside measure of resting metabolism with a laboratory measure in athletes following an 8-hr fast. Thirty-two athletes (24 females and eight males) underwent measures of resting metabolism using indirect calorimetry once at their bedside (inpatient) and once in a simulated laboratory setting (outpatient). Paired t test was used to compare the mean ± SD differences between the two protocols. Inpatient REE was 7,302 ± 1,272 kJ/day and outpatient REE was 7,216 ± 1,116 kJ/day (p = .448). Thirteen participants repeated the outpatient protocol and 17 repeated the inpatient protocol to assess the day-to-day variation. Reliability was assessed using the intraclass correlation coefficient and typical error. The inpatient-protocol variability was 96% with a typical error of 336.2 kJ/day. For the outpatient protocol, the intraclass correlation coefficient and typical error were 87% and 477.6 kJ/day, respectively. Results indicate no difference in REE when measured under inpatient and outpatient conditions; however, the inpatient protocol has greater reliability.

Bone and Burke are with Sports Nutrition, Australian Institute of Sport, Canberra, Australian Capital Territory, Australia; and Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.

Address author correspondence to Julia L. Bone at juliabone@sini.co.uk.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • BerkeE.M.GardnerA.W.GoranM.I. & PoehlmanE.T. (1992). Resting metabolic rate and the influence of the pretesting environment. American Journal of Clinical Nutrition 55626629. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BulloughR.C. & MelbyC.L. (1993). Effect of inpatient versus outpatient measurement protocol on resting metabolic rate and respiratory exchange ratio. Annals of Nutrition & Metabolism 372432. PubMed doi:10.1159/000177745

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’AlessioD.A.KavleE.C.MozzoliM.A.SmalleyK.J.PolanskyM.KendrickZ.V.OwenO.E. (1988). Thermic effect of food in lean and obese men. Journal of Clinical Investigation 8117811789. PubMed doi:10.1172/JCI113520

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FrankenfieldD.C. & ColemanA. (2009). Recovery to resting metabolic state after walking. Journal of the American Dietetic Association 10919141916. PubMed doi:10.1016/j.jada.2009.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FredrixE.W.SoetersP.B.von MeyenfeldtM.F. & SarisW.H. (1990). Measurement of resting energy expenditure in a clinical setting. Clinical Nutrition 9299304. PubMed doi:10.1016/0261-5614(90)90001-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FullmerS.Benson-DaviesS.EarthmanC.P.FrankenfieldD.C.GradwellE.LeeP.S.TrabulsiJ. (2015). Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. Journal of the Academy of Nutrition and Dietetics 11514171446.e2. PubMed doi:10.1016/j.jand.2015.04.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HaugenH.A.ChanL.N. & LiF. (2007). Indirect calorimetry: A practical guide for clinicians. Nutrition in Clinical Practice 22377388. PubMed doi:10.1177/0115426507022004377

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HopkinsW.G. (2000). Measures of reliability in sports medicine and science. Sports Medicine 30115. PubMed doi:10.2165/00007256-200030010-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Institute of Medicine. (2005). Dietary reference intakes for energy carbohydrate fiber fat fatty acids cholesterol protein and amino acids (macronutrients) (pp. 112114). Washington, DC: National Academies Press.

    • Search Google Scholar
    • Export Citation
  • LoucksA.B.KiensB. & WrightH.H. (2011). Energy availability in athletes. Journal of Sports Sciences 29(Suppl. 1) 715. doi:10.1080/02640414.2011.588958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MelinA.TornbergA.B.SkoubyS.MollerS.S.Sundgot-BorgenJ.FaberJ.SjodinA. (2014). Energy availability and the female athlete triad in elite endurance athletes. Scandinavian Journal of Medicine & Science in Sports 25(5) 610622. PubMed doi:10.1111/sms.12261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MountjoyM.Sundgot-BorgenJ.BurkeL.CarterS.ConstantiniN.LebrunC.LjungqvistA. (2015). Relative energy deficiency in sport (RED-S). British Journal of Sports Medicine 49421423. PubMed doi:10.1136/bjsports-2014-094559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NanaA.SlaterG.J.HopkinsW.G.HalsonS.L.MartinD.T.WestN.P. & BurkeL.M. (2016). Importance of standardized DXA protocol for assessing physique changes in athletes. International Journal of Sport Nutrition and Exercise Metabolism 26259267. PubMed doi:10.1123/ijsnem.2013-0111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PoehlmanE.T.MelbyC.L. & BadylakS.F. (1988). Resting metabolic rate and postprandial thermogenesis in highly trained and untrained males. American Journal of Clinical Nutrition 47793798. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SjodinA.M.ForslundA.H.WesterterpK.R.AnderssonA.B.ForslundJ.M. & HambraeusL.M. (1996). The influence of physical activity on BMR. Medicine & Science in Sports & Exercise 288591. PubMed doi:10.1097/00005768-199601000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TurleyK.R.McBrideP.J. & WilmoreJ.H. (1993). Resting metabolic rate measured after subjects spent the night at home vs at a clinic. American Journal of Clinical Nutrition 58141144. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WeirJ.B. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology 10919. PubMed doi:10.1113/jphysiol.1949.sp004363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WeirJ.P. (2005). Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research 19231240. PubMed doi:10.1519/15184.1

    • Search Google Scholar
    • Export Citation
  • WoodsA.L.Garvican-LewisL.A.RiceA.J. & ThompsonK.G. (2016). The ventilation-corrected ParvoMedics TrueOne 2400 provides a valid and reliable assessment of resting metabolic rate (RMR) in athletes compared with the Douglas bag method. International Journal of Sport Nutrition and Exercise Metabolism 26(5) 454463. PubMed doi:10.1123/ijsnem.2015-0315

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 56 56 14
Full Text Views 11 11 5
PDF Downloads 2 2 2
Altmetric Badge
PubMed
Google Scholar