Prevalence of Indicators of Low Energy Availability in Elite Female Sprinters

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Low energy availability (LEA), and subsequent relative energy deficiency in sport, has been observed in endurance, aesthetic, and team sport athletes, with limited data on prevalence in athletes in short-burst activities such as sprinting. We examined prevalence of signs and symptoms of LEA in elite female sprinters at the start of the training season (PRE), and at the end of a 5-month indoor training period (POST). Four of 13 female sprinters (31%) presented at PRE testing with at least one primary (amenorrhea, low bone mineral density, low follicle-stimulating hormone, luteinizing hormone, or estradiol, resting metabolic rate ≤29 kcal/kg fat-free mass, Low Energy Availability in Females Questionnaire score ≥8) and one secondary indicator of LEA (fasting blood glucose <4 mmol/L, free triiodothyronine <3.5 pmol/L, ferritin <25 μg/L, low-density lipoprotein cholesterol >3.0 mmol/L, fasting insulin <20 pmol/L, low insulin-like growth factor-1, systolic blood pressure <90 mmHg, and/or diastolic blood pressure <60 mmHg). At POST, seven out of 13 athletes (54%) presented with at least one primary and one secondary indicator of LEA, three of whom had also presented with indicators of LEA at PRE. Five out of 13 (39%) athletes had previous stress fracture history, though this was not associated with current indicators of LEA (PRE: r = .52, p = .07; POST: r = −.07, p = .82). In conclusion, elite female sprinters may present with signs and symptoms of LEA, even after off-season rest. Medical and coaching staff should be aware of the signs and symptoms of LEA and relative energy deficiency in sport and should include appropriate screening and intervention strategies when working with sprinters.

Sygo is with Athletics Canada, Ottawa, Ontario, Canada. Coates and Burr are with Human Performance & Health Research Laboratory, University of Guelph, Guelph, Ontario, Canada. Sesbreno is with Canadian Sport Institute Ontario, Toronto, Ontario, Canada. Mountjoy is with Fédération Internationale de Natation (FINA), Lausanne, Switzerland; and the Dept. of Family Medicine, McMaster University, Hamilton, Ontario, Canada.

Address author correspondence to Margo L. Mountjoy at mmsportdoc@mcmaster.ca.
  • Bennell, K.L., & Crossley, K. (1996). Musculoskeletal injuries in track and field: Incidence, distribution, and risk factors. Australian Journal of Science and Medicine in Sport, 28, 69–75. PubMed ID: 8937661

    • Search Google Scholar
    • Export Citation
  • Bennell, K.L., Malcolm, S.A., Khan, T.M., Reid, S.J., Brukner, P.D., Ebeling, P.R., … Wark, J.D. (1997). Bone mass and bone turnover in power athletes, endurance athletes, and controls: A 12-month longitudinal study. Bone, 20, 477–484. PubMed ID: 9145246 doi:10.1016/S8756-3282(97)00026-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blauwet, C.A., Brook, E.M., Tenforde, A.S., Broad, E., Hu, C.H., Abdu-Glass, E., & Matzkin, E.G. (2017). Low energy availability, menstrual dysfunction, and low bone mineral density in individuals with a disability: Implications for the para athlete population. Sports Medicine, 47, 1697–1708. PubMed ID: 28213754 doi:10.1007/s40279-017-0696-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, H., von Andrian-Werburg, J., Schanzer, W., & Thevis, M. (2018). Nutrition status of young elite female German football players. Pediatric Exercise Science, 30(1), 157–167. doi:10.1123/pes.2017-0072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, K.N., Wengreen, H.J., & Beals, K.A. (2014). Knowledge of the female athlete triad, and prevalence of triad risk factors among female high school athletes and their coaches. Journal of Pediatric and Adolescent Gynecology, 27, 278–282. PubMed ID: 25023979 doi:10.1016/j.jpag.2013.11.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunningham, J.J. (1980). A reanalysis of the factors influencing basal metabolic rate in normal adults. American Journal of Clinical Nutrition, 33, 2372–2374. PubMed ID: 7435418 doi:10.1093/ajcn/33.11.2372

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., Lee, D.K., VanHeest, J.L., Schied, J.L., West, S.L., & Williams, N.I. (2007). Severity of energy-related menstrual disturbances increases in proportion to indices of energy conservation in exercising women. Fertility and Sterility, 88, 971–975. PubMed ID: 17418159 doi:10.1016/j.fertnstert.2006.11.171

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Souza, M.J., & Williams, N.I. (2005). Beyond hypoestrogenism in amenorrheic athletes: Energy deficiency as a contributing factor for bone loss. Current Sports Medicine Reports, 4, 38–44. PubMed ID: 15659278 doi:10.1097/01.CSMR.0000306070.67390.cb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deutz, R.C., Bernadot, D., Martin, D.E., & Cody, M.M. (2000). Relationship between energy deficits and body composition in elite female gymnasts and runners. Medicine & Science in Sports & Exercise, 32, 659–668. PubMed ID: 10731010 doi:10.1097/00005768-200003000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folscher, L.L., Grant, C.C., Fletcher, L., & Janse van Rensberg, D.C. (2015). Ultra-marathon athletes at risk for the female athlete triad. Sports Medicine - Open, 1, 29. PubMed ID: 26380807 doi:10.1186/s40798-015-0027-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guebels, C.P., Kam, L.C., Maddalozzo, G.F., & Manore, M.M. (2014). Active women before/after an intervention designed to restore menstrual function: Resting metabolic rate and comparison of four methods to quantify energy expenditure and energy availability. International Journal of Sport Nutrition and Exercise Metabolism, 24, 37–46. doi:10.1123/ijsnem.2012-0165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulmi, J.J., Isola, V., Suonpää, M., Järvinen, N.J., Kokkonen, M., Wennerström, A., … Häkkinen, K. (2017). The effects of intensive weight reduction on body composition and serum hormones in female fitness competitors. Frontiers in Physiology, 7, 689. doi:10.3389/fphys.2016.00689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikedo, A., Ishibashi, A., Matsumiya, S., Kaizaki, A., Ebi, K., & Fujita, S. (2016). Comparison of site-specific bone mineral densities between endurance runners and sprinters in adolescent women. Nutrients, 8, 781. doi:10.3390/nu8120781

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Atomic Energy Agency. (2010). Dual energy X ray absorptiometry for bone mineral density and body composition assessment (IAEA Human Health Series, No. 15). Retrieved from http://wwpub.iaea.org/MTCD/Publications/PDF/Pub1479_web.pdf

    • Export Citation
  • Keen, A.D., & Drinkwater, B.L. (1997). Irreversible bone loss in former amenorrheic athletes. Osteoporosis International, 7, 311–315. PubMed ID: 9373563 doi:10.1007/BF01623770

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koehler, K., Williams, N.I., Mallinson, R.J., Southmayd, E.A., Allaway, H.C., & De Souza, M.J. (2016). Low resting metabolic rate in exercise-associated amenorrhea is not due to a reduced proportion of highly active metabolic tissue compartments. American Journal of Physiology-Endocrinology and Metabolism, 311, 480–487. PubMed ID: 27382033 doi:10.1152/ajpendo.00110.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambrinoudaki, I., & Papadimitriou, D. (2010). Pathophysiology of bone loss in the female athlete. Annals of the New York Academy of Sciences, 1205, 45–50. PubMed ID: 20840252 doi:10.1111/j.1749-6632.2010.05681.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laughlin, G.A., & Yen, S.S. (1996). Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. The Journal of Clinical Endocrinology & Metabolism, 81, 4301–4309. PubMed ID: 8954031

    • Search Google Scholar
    • Export Citation
  • Loucks, A.B. (2007). Energy availability and infertility. Current Opinion in Endocrinology, Diabetes and Obesity, 14, 470–474. doi:10.1097/MED.0b013e3282f1cb6a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loucks, A.B., & Thuma, J.R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. The Journal of Clinical Endocrinology & Metabolism, 88, 297–311. PubMed ID: 12519869 doi:10.1210/jc.2002-020369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melin, A., Tornberg, A.B., Skouby, S., Faber, J., Ritz, C., Sjödin, A., & Sundgot-Borgen, J. (2014). The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. British Journal of Sports Medicine, 48, 540–545. PubMed ID: 24563388 doi:10.1136/bjsports-2013-093240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melin, A., Tornberg, Å.B., Skouby, S., Møller, S.S., Sundgot-Borgen, J., Faber, J., … Sjödin, A. (2015). Energy availability and the female athlete triad in elite endurance athletes. Scandinavian Journal of Medicine & Science in Sports, 25, 610–622. PubMed ID: 24888644 doi:10.1111/sms.12261

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mountjoy, M., Sundgot-Borgen, J., Burke, L., Carter, S., Constantini, N., Lebrun, C., … Ljunqvist, A. (2014). The IOC consensus statement: Beyond the female athlete triad—Relative energy deficiency in sport (RED-S). British Journal of Sports Medicine, 48, 491–497. PubMed ID: 24620037 doi:10.1136/bjsports-2014-093502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudd, L., Fornetti, W., & Pivarnik, J. (2007). Bone mineral density in collegiate female athletes: Comparisons among sports. Journal of Athletic Training, 42, 403–408. PubMed ID: 18059997

    • Search Google Scholar
    • Export Citation
  • Nattiv, A., Louks, A.B., Manore, M.M., Sanborn, C.F., Sundgot-Borgen, J., Warren, M.P., & American College of Sports Medicine. (2007).American College of Sports Medicine position stand. The female athlete triad. Medicine & Science in Sports & Exercise, 39, 1867–1882. PubMed ID: 17909417 doi:10.1249/mss.0b013e318149f111

    • Search Google Scholar
    • Export Citation
  • Petkus, D.L., Murray-Kolb, L.E., & De Souza, M.J. (2017). The unexplored crossroads of the female athlete triad and iron deficiency: A narrative review. Sports Medicine, 47(9), 1721–1737. doi:10.1007/s40279-017-0706-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pyne, D.B., Anderson, M.E., & Hopkins, W.G. (2006). Monitoring changes in lean mass of elite male and female swimmers. International Journal of Sports Physiology and Performance, 1, 14–26. PubMed ID: 19114734 doi:10.1123/ijspp.1.1.14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauh, M.J., Macera, C.A., Trone, D.W., Shaffer, R.A., & Brodine, S.K. (2006). Epidemiology of stress fracture and lower-extremity overuse injury in female recruits. Medicine & Science in Sports & Exercise, 38, 1571–1577. PubMed ID: 16960517 doi:10.1249/01.mss.0000227543.51293.9d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenlund, A., Eriksson, M.J., Schenck-Gustafsson, K., & Hirschberg, A.L. (2005). Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. The Journal of Clinical Endocrinology & Metabolism, 90, 1354–1359. doi:10.1210/jc.2004-1286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakai, Y., Koike, G., Numata, M., & Jingu, S. (2010). Is whole body bone mineral density measured by the dual energy X-ray absorptiometry applied to evaluate risk of osteoporosis among Japanese adult females? Fukuoka Igaku Zasshi, 101, 69–74. PubMed ID: 20715563

    • Search Google Scholar
    • Export Citation
  • Schaal, K., Tiollier, E., Le Meur, Y., Casazza, G., & Hausswirth, C. (2017). Elite synchronized swimmers display decreased energy availability during intensified training. Scandinavian Journal of Medicine & Science in Sports, 27, 925–934. PubMed ID: 27367601 doi:10.1111/sms.12716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, G.J., Duthie, G.M., & Hopkins, W.G. (2006). Validation of a skinfold index for tracking proportional changes in lean mass. British Journal of Sports Medicine, 40, 208–213. PubMed ID: 16505075 doi:10.1136/bjsm.2005.019794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, J., McLay-Cooke, R., Brown, R., & Black, K. (2016). Female recreational exercisers at risk for low energy availability. International Journal of Sport Nutrition and Exercise Metabolism, 26, 421–427. PubMed ID: 26841435 doi:10.1123/ijsnem.2015-0245

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, A., Marfell-Jones, M., Olds, T., & de Ridder, H. (2011). International standards for anthropometric assessment (pp. 1–112). Lower Hutt, New Zealand: International Society for the Advancement of Kinanthropometry.

    • Search Google Scholar
    • Export Citation
  • Thong, F.S.L., McLean, C., & Graham, T.E. (2000). Plasma leptin in female athletes: Relationship with body fat, reproductive, nutritional, and endocrine factors. Journal of Applied Physiology, 88, 2037–2044. PubMed ID: 10846016 doi:10.1152/jappl.2000.88.6.2037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tornberg, Å.B., Melin, A., Koivula, F.M., Johansson, A., Skouby, S., Faber, J., & Sjödin, A. (2017). Reduced neuromuscular performance in amenorrheic elite endurance athletes. Medicine & Science in Sports & Exercise, 49, 2478–2485. PubMed ID: 28723842 doi:10.1249/MSS.0000000000001383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torstveit, M.K., & Sungdot-Borgen, J. (2005). Participation in leanness sports but not training is associated with menstrual dysfunction: A national survey of 1276 elite athletes and controls. British Journal of Sports Medicine, 39, 141–147. doi:10.1136/bjsm.2003.011338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanHeest, J.L., Rodgers, C.D., Mahoney, C.E., & De Souza, M.J. (2014). Ovarian suppression impairs sports performance in junior elite female swimmers. Medicine & Science in Sports & Exercise, 46, 156–166. PubMed ID: 23846160 doi:10.1249/MSS.0b013e3182a32b72

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viner, R.T., Harris, M., Berning, J.R., & Meyer, N.L. (2015). Energy availability and dietary patterns of adult male and female competitive cyclists with lower than expected bone mineral density. International Journal of Sport Nutrition and Exercise Metabolism, 25, 594–602. PubMed ID: 26131616 doi:10.1123/ijsnem.2015-0073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, L., Liu, P.Y., Ilich, J.Z., & Haymes, E.M. (2012). Dietary and training predictors of stress fractures in female runners. International Journal of Sport Nutrition and Exercise Metabolism, 22, 374–382. PubMed ID: 23011655 doi:10.1123/ijsnem.22.5.374

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 283 283 72
Full Text Views 41 41 12
PDF Downloads 32 32 10