The Effect of a Dietary Nitrate Supplementation in the Form of a Single Shot of Beetroot Juice on Static and Dynamic Apnea Performance

in International Journal of Sport Nutrition and Exercise Metabolism

Click name to view affiliation

Matthew J. BarlowLeeds Beckett University

Search for other papers by Matthew J. Barlow in
Current site
Google Scholar
PubMed
Close
*
,
Antonis EliaLeeds Beckett University

Search for other papers by Antonis Elia in
Current site
Google Scholar
PubMed
Close
*
,
Oliver M. ShannonLeeds Beckett University

Search for other papers by Oliver M. Shannon in
Current site
Google Scholar
PubMed
Close
*
,
Angeliki ZacharogianniLeeds Beckett University

Search for other papers by Angeliki Zacharogianni in
Current site
Google Scholar
PubMed
Close
*
, and
Angelica Lodin-SundstromMid Sweden University

Search for other papers by Angelica Lodin-Sundstrom in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Introduction: The purpose of the present study was to assess the effects of acute nitrate (NO3)-rich beetroot juice (BRJ) supplementation on peripheral oxygen saturation (SpO2), heart rate (HR), and pulmonary gas exchange during submaximal static and dynamic apnea. Methods: Nine (six males and three females) trained apneists (age: 39.6 ± 8.2 years, stature: 170.4 ± 11.5 cm, and body mass: 72.0 ± 11.5 kg) performed three submaximal static apneas at 60%, 70%, and 80% of the participant’s current reported personal best time, followed by three submaximal (∼75% or personal best distance) dynamic apneas following the consumption of either a 70-ml concentrated BRJ (7.7 mmol NO3) or a NO3-depleted placebo (PLA; 0.1 mmol NO3) in double-blind randomized manner. HR and SpO2 were measured via fingertip pulse oximetry at the nadir, and online gas analysis was used to assess pulmonary oxygen uptake (V˙O2) during recovery following breath-holds. Results: There were no differences (p < .05) among conditions for HR (PLA = 59 ± 11 bpm and BRJ = 61 ± 12 bpm), SpO2 (PLA = 83% ± 14% and BRJ = 84% ±9%), or V˙O2 (PLA = 1.00 ± 0.22 L/min and BRJ = 0.97 ± 0.27 L/min). Conclusion: The consumption of 7.7 mmol of beetroot juice supplementation prior to a series of submaximal static and dynamic apneas did not induce a significant change in SpO2, HR, and V˙O2 when compared with placebo. Therefore, there is no apparent physiological response that may benefit free divers as a result of the supplementation.

Barlow, Elia, Shannon, and Zacharogianni are with the Institute for Sport Physical Activity and Leisure, Carnegie Faculty, Leeds Beckett University, Leeds, United Kingdom. Lodin-Sundstrom is with the Swedish Winter Sports Research Centre, Dept. of Health Sciences, Mid Sweden University, Harnosand, Sweden.

Address author correspondence to Matthew J. Barlow at Matthew.Barlow@LeedsBeckett.ac.uk.
  • Collapse
  • Expand
  • Bailey, S.J., Fulford, J., Vanhatalo, A., Winyard, P.G., Blackwell, J.R., DiMenna, F.J., … Jones, A.M. (2010). Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. Journal of Applied Physiology, 109(1), 135148. PubMed doi:10.1152/japplphysiol.00046.2010

    • Search Google Scholar
    • Export Citation
  • Bailey, S.J., Winyard, P., Vanhatalo, A., Blackwell, J.R., DiMenna, F.J., Wilkerson, D.P., … Jones, A.M. (2009). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology, 107(4), 11441155. PubMed doi:10.1152/japplphysiol.00722.2009

    • Search Google Scholar
    • Export Citation
  • Bakovic, D., Valic, Z., Eterovic, D., Vukovic, I., Obad, A., Marinovic-Terzic, I., & Dujic, Z. (2003). Spleen volume and blood flow response to repeated breath-hold apneas. Journal of Applied Physiology, 95(4), 14601466.

    • Search Google Scholar
    • Export Citation
  • Bourdillon, N., Fan, J.L., Uva, B., Müller, H., Meyer, P., & Kayser, B. (2015). Effect of oral nitrate supplementation on pulmonary hemodynamics during exercise and time trial performance in normoxia and hypoxia: A randomized controlled trial. Frontiers in Physiology, 6, 288. PubMed doi:10.3389/fphys.2015.00288

    • Search Google Scholar
    • Export Citation
  • Castello, P.R., David, P.S., McClure, T., Crook, Z., & Poyton, R.O. (2006). Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metabolism, 3(4), 277287. PubMed doi:10.1016/j.cmet.2006.02.011

    • Search Google Scholar
    • Export Citation
  • Cermak, N.M., Gibala, M.J., & van Loon, L.J. (2012). Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 22(1), 6471. PubMed doi:10.1123/ijsnem.22.1.64

    • Search Google Scholar
    • Export Citation
  • Engan, H.K., Jones, A.M., Ehrenberg, F., & Schagatay, E. (2012). Acute dietary nitrate supplementation improves dry static apnea performance. Respiratory Physiology & Neurobiology, 182(2–3), 5359. doi:10.1016/j.resp.2012.05.007

    • Search Google Scholar
    • Export Citation
  • Heyward, V.H., & Gibson, A. (2014). Advanced fitness assessment and exercise prescription (7th ed.). Leeds, UK: Human Kinetics.

  • Jones, A.M. (2014). Dietary nitrate supplementation and exercise performance. Sports Medicine, 44(1), 3545.

  • Kelly, J., Vanhatalo, A., Bailey, S.J., Wylie, L.J., Tucker, C., List, S., … Jones, A.M. (2014). Dietary nitrate supplementation: Effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 307(7), 920930.

    • Search Google Scholar
    • Export Citation
  • Lansley, K.E., Winyard, P.G., Fulford, J., Vanhatalo, A., Bailey, S.J., Blackwell, J.R., … Jones, A.M. (2011). Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. Journal of Applied Physiology, 110(3), 591600. PubMed doi:10.1152/japplphysiol.01070.2010

    • Search Google Scholar
    • Export Citation
  • Larsen, F.J., Schiffer, T.A., Borniquel, S., Sahlin, K., Ekblom, B., Lundberg, J.O., & Weitzberg, E. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metabolism, 13(2), 149159. PubMed doi:10.1016/j.cmet.2011.01.004

    • Search Google Scholar
    • Export Citation
  • Larsen, F.J., Weitzberg, E., Lundberg, J.O., & Ekblom, B. (2007). Effects of dietary nitrate on oxygen cost during exercise. Acta Physiologica, 191(1), 5966. PubMed doi:10.1111/j.1748-1716.2007.01713.x

    • Search Google Scholar
    • Export Citation
  • Lundberg, J.O., Weitzberg, E., & Gladwin, M.T. (2008). The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery, 7(2), 156167. PubMed doi:10.1038/nrd2466

    • Search Google Scholar
    • Export Citation
  • Mahoney, L., Wiper, M., & Comfort, P. (2012). Nitrate ingestion: Implications for performance and training. Strength and Conditioning Journal, 34(4), 2225. doi:10.1519/SSC.0b013e31824eda1e

    • Search Google Scholar
    • Export Citation
  • Masschelein, E., Van Thienen, R., Wang, X., Van Schepdael, A., Thomis, M., & Hespel, P. (2012). Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. Journal of Applied Physiology, 113(5), 736745. PubMed doi:10.1152/japplphysiol.01253.2011

    • Search Google Scholar
    • Export Citation
  • Muggeridge, D.J., Howe, C.C.F., Spendiff, O., Pedlar, C., James, P.E., & Easton, C. (2014). A single dose of beetroot juice enhances cycling performance in simulated altitude. Medicine & Science in Sports & Exercise, 46(1), 143150. doi:10.1249/MSS.0b013e3182a1dc51

    • Search Google Scholar
    • Export Citation
  • Patrician, A., & Schagatay, E. (2017). Dietary nitrate enhances arterial oxygen saturation after dynamic apnea. Scandinavian Journal of Medicine & Science in Sports, 27(6), 622626. doi:10.1111/sms.12684

    • Search Google Scholar
    • Export Citation
  • Pawlak-Chaouch, M., Boissière, J., Gamelin, F.X., Cuvelier, G., Berthoin, S., & Aucouturier, J. (2016). Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: A systematic review and a meta-analysis. Nitric Oxide, 53, 6576. PubMed doi:10.1016/j.niox.2016.01.001

    • Search Google Scholar
    • Export Citation
  • Porcelli, S., Ramaglia, M., Bellistri, G., Pavei, G., Pugliese, L., Montorsi, M., … Marzorati, M. (2014). Aerobic fitness affects the exercise performance responses to nitrate supplementation. Medicine & Science in Sports & Exercise, 134.

    • Search Google Scholar
    • Export Citation
  • Prommer, N., Ehrmann, U., Schmidt, W., Steinacker, J.M., Radermacher, P., & Muth, C.M. (2007). Total haemoglobin mass and spleen contraction: A study on competitive apnea divers, non-diving athletes and untrained control subjects. European Journal of Applied Physiology, 101(6), 753759.

    • Search Google Scholar
    • Export Citation
  • Schagatay, E. (2009). Predicting performance in competitive apnoea diving. Part I: Static apnoea. Diving and Hyperbaric Medicine, 39(2), 8899. PubMed

    • Search Google Scholar
    • Export Citation
  • Schagatay, E. (2010). Predicting performance in competitive apnea diving. Part II: Dynamic apnoea. Diving and Hyperbaric Medicine, 40(1), 1122. PubMed

    • Search Google Scholar
    • Export Citation
  • Schagatay, E. (2011). Predicting performance in competitive apnea diving. Part III: Deep diving. Diving and Hyperbaric Medicine, 41(4), 216228. PubMed

    • Search Google Scholar
    • Export Citation
  • Schagatay, E., & Holm, B. (1996). Effects of water and ambient air temperatures on human diving bradycardia. European Journal of Applied Physiology and Occupational Physiology, 73(1), 16.

    • Search Google Scholar
    • Export Citation
  • Schiffer, T.A., Larsen, F.J., Lundberg, J.O., Weitzberg, E., & Lindholm, P. (2013). Effects of dietary inorganic nitrate on static and dynamic breath-holding in humans. Respiratory Physiology & Neurobiology, 185(2), 339348. doi:10.1016/j.resp.2012.09.008

    • Search Google Scholar
    • Export Citation
  • Shannon, O.M., Duckworth, L., Barlow, M.J., Deighton, K., Matu, J., Williams, E.L., … O’Hara, J.P. (2017). Effects of dietary nitrate supplementation on physiological responses, cognitive function, and exercise performance at moderate and very-high simulated altitude. Frontiers in Physiology, 8, 401. PubMed doi:10.3389/fphys.2017.00401

    • Search Google Scholar
    • Export Citation
  • Shannon, O.M., Duckworth, L., Barlow, M.J., Woods, D., Lara, J., Siervo, M., & O’Hara, J.P. (2016). Dietary nitrate supplementation enhances high-intensity running performance in moderate normobaric hypoxia, independent of aerobic fitness. Nitric Oxide, 59, 6370. PubMed doi:10.1016/j.niox.2016.08.001

    • Search Google Scholar
    • Export Citation
  • Talke, P., & Stapelfeldt, C. (2006). Effect of peripheral vasoconstriction on pulse oximetry. Journal of Clinical Monitoring and Computing, 20(5), 305309.

    • Search Google Scholar
    • Export Citation
  • Wylie, L.J., Kelly, J., Bailey, S.J., Blackwell, J.R., Skiba, P.F., Winyard, P.G., … Jones, A.M. (2013). Beetroot juice and exercise: Pharmacodynamic and dose–response relationships. Journal of Applied Physiology, 115(3), 325336. PubMed doi:10.1152/japplphysiol.00372.2013

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2302 777 156
Full Text Views 50 8 0
PDF Downloads 40 8 0