The Effect of a Dietary Nitrate Supplementation in the Form of a Single Shot of Beetroot Juice on Static and Dynamic Apnea Performance

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Introduction: The purpose of the present study was to assess the effects of acute nitrate (NO3)-rich beetroot juice (BRJ) supplementation on peripheral oxygen saturation (SpO2), heart rate (HR), and pulmonary gas exchange during submaximal static and dynamic apnea. Methods: Nine (six males and three females) trained apneists (age: 39.6 ± 8.2 years, stature: 170.4 ± 11.5 cm, and body mass: 72.0 ± 11.5 kg) performed three submaximal static apneas at 60%, 70%, and 80% of the participant’s current reported personal best time, followed by three submaximal (∼75% or personal best distance) dynamic apneas following the consumption of either a 70-ml concentrated BRJ (7.7 mmol NO3) or a NO3-depleted placebo (PLA; 0.1 mmol NO3) in double-blind randomized manner. HR and SpO2 were measured via fingertip pulse oximetry at the nadir, and online gas analysis was used to assess pulmonary oxygen uptake (V˙O2) during recovery following breath-holds. Results: There were no differences (p < .05) among conditions for HR (PLA = 59 ± 11 bpm and BRJ = 61 ± 12 bpm), SpO2 (PLA = 83% ± 14% and BRJ = 84% ±9%), or V˙O2 (PLA = 1.00 ± 0.22 L/min and BRJ = 0.97 ± 0.27 L/min). Conclusion: The consumption of 7.7 mmol of beetroot juice supplementation prior to a series of submaximal static and dynamic apneas did not induce a significant change in SpO2, HR, and V˙O2 when compared with placebo. Therefore, there is no apparent physiological response that may benefit free divers as a result of the supplementation.

Barlow, Elia, Shannon, and Zacharogianni are with the Institute for Sport Physical Activity and Leisure, Carnegie Faculty, Leeds Beckett University, Leeds, United Kingdom. Lodin-Sundstrom is with the Swedish Winter Sports Research Centre, Dept. of Health Sciences, Mid Sweden University, Harnosand, Sweden.

Address author correspondence to Matthew J. Barlow at Matthew.Barlow@LeedsBeckett.ac.uk.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • BaileyS.J.FulfordJ.VanhataloA.WinyardP.G.BlackwellJ.R.DiMennaF.J.JonesA.M. (2010). Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. Journal of Applied Physiology 109(1) 135148. PubMed doi:10.1152/japplphysiol.00046.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaileyS.J.WinyardP.VanhataloA.BlackwellJ.R.DiMennaF.J.WilkersonD.P.JonesA.M. (2009). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology 107(4) 11441155. PubMed doi:10.1152/japplphysiol.00722.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BakovicD.ValicZ.EterovicD.VukovicI.ObadA.Marinovic-TerzicI. & DujicZ. (2003). Spleen volume and blood flow response to repeated breath-hold apneas. Journal of Applied Physiology 95(4) 14601466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BourdillonN.FanJ.L.UvaB.MüllerH.MeyerP. & KayserB. (2015). Effect of oral nitrate supplementation on pulmonary hemodynamics during exercise and time trial performance in normoxia and hypoxia: A randomized controlled trial. Frontiers in Physiology 6288. PubMed doi:10.3389/fphys.2015.00288

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CastelloP.R.DavidP.S.McClureT.CrookZ. & PoytonR.O. (2006). Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: Implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metabolism 3(4) 277287. PubMed doi:10.1016/j.cmet.2006.02.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CermakN.M.GibalaM.J. & van LoonL.J. (2012). Nitrate supplementation’s improvement of 10-km time-trial performance in trained cyclists. International Journal of Sport Nutrition and Exercise Metabolism 22(1) 6471. PubMed doi:10.1123/ijsnem.22.1.64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EnganH.K.JonesA.M.EhrenbergF. & SchagatayE. (2012). Acute dietary nitrate supplementation improves dry static apnea performance. Respiratory Physiology & Neurobiology 182(2–3) 5359. doi:10.1016/j.resp.2012.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeywardV.H. & GibsonA. (2014). Advanced fitness assessment and exercise prescription (7th ed.). Leeds, UK: Human Kinetics.

  • JonesA.M. (2014). Dietary nitrate supplementation and exercise performance. Sports Medicine 44(1) 3545.

  • KellyJ.VanhataloA.BaileyS.J.WylieL.J.TuckerC.ListS.JonesA.M. (2014). Dietary nitrate supplementation: Effects on plasma nitrite and pulmonary O2 uptake dynamics during exercise in hypoxia and normoxia. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 307(7) 920930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LansleyK.E.WinyardP.G.FulfordJ.VanhataloA.BaileyS.J.BlackwellJ.R.JonesA.M. (2011). Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. Journal of Applied Physiology 110(3) 591600. PubMed doi:10.1152/japplphysiol.01070.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LarsenF.J.SchifferT.A.BorniquelS.SahlinK.EkblomB.LundbergJ.O. & WeitzbergE. (2011). Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metabolism 13(2) 149159. PubMed doi:10.1016/j.cmet.2011.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LarsenF.J.WeitzbergE.LundbergJ.O. & EkblomB. (2007). Effects of dietary nitrate on oxygen cost during exercise. Acta Physiologica 191(1) 5966. PubMed doi:10.1111/j.1748-1716.2007.01713.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LundbergJ.O.WeitzbergE. & GladwinM.T. (2008). The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery 7(2) 156167. PubMed doi:10.1038/nrd2466

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MahoneyL.WiperM. & ComfortP. (2012). Nitrate ingestion: Implications for performance and training. Strength and Conditioning Journal 34(4) 2225. doi:10.1519/SSC.0b013e31824eda1e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MasscheleinE.Van ThienenR.WangX.Van SchepdaelA.ThomisM. & HespelP. (2012). Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia. Journal of Applied Physiology 113(5) 736745. PubMed doi:10.1152/japplphysiol.01253.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MuggeridgeD.J.HoweC.C.F.SpendiffO.PedlarC.JamesP.E. & EastonC. (2014). A single dose of beetroot juice enhances cycling performance in simulated altitude. Medicine & Science in Sports & Exercise 46(1) 143150. doi:10.1249/MSS.0b013e3182a1dc51

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PatricianA. & SchagatayE. (2017). Dietary nitrate enhances arterial oxygen saturation after dynamic apnea. Scandinavian Journal of Medicine & Science in Sports 27(6) 622626. doi:10.1111/sms.12684

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pawlak-ChaouchM.BoissièreJ.GamelinF.X.CuvelierG.BerthoinS. & AucouturierJ. (2016). Effect of dietary nitrate supplementation on metabolic rate during rest and exercise in human: A systematic review and a meta-analysis. Nitric Oxide 536576. PubMed doi:10.1016/j.niox.2016.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PorcelliS.RamagliaM.BellistriG.PaveiG.PuglieseL.MontorsiM.MarzoratiM. (2014). Aerobic fitness affects the exercise performance responses to nitrate supplementation. Medicine & Science in Sports & Exercise 134.

    • Search Google Scholar
    • Export Citation
  • PrommerN.EhrmannU.SchmidtW.SteinackerJ.M.RadermacherP. & MuthC.M. (2007). Total haemoglobin mass and spleen contraction: A study on competitive apnea divers, non-diving athletes and untrained control subjects. European Journal of Applied Physiology 101(6) 753759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchagatayE. (2009). Predicting performance in competitive apnoea diving. Part I: Static apnoea. Diving and Hyperbaric Medicine 39(2) 8899. PubMed

    • Search Google Scholar
    • Export Citation
  • SchagatayE. (2010). Predicting performance in competitive apnea diving. Part II: Dynamic apnoea. Diving and Hyperbaric Medicine 40(1) 1122. PubMed

    • Search Google Scholar
    • Export Citation
  • SchagatayE. (2011). Predicting performance in competitive apnea diving. Part III: Deep diving. Diving and Hyperbaric Medicine 41(4) 216228. PubMed

    • Search Google Scholar
    • Export Citation
  • SchagatayE. & HolmB. (1996). Effects of water and ambient air temperatures on human diving bradycardia. European Journal of Applied Physiology and Occupational Physiology 73(1) 16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchifferT.A.LarsenF.J.LundbergJ.O.WeitzbergE. & LindholmP. (2013). Effects of dietary inorganic nitrate on static and dynamic breath-holding in humans. Respiratory Physiology & Neurobiology 185(2) 339348. doi:10.1016/j.resp.2012.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ShannonO.M.DuckworthL.BarlowM.J.DeightonK.MatuJ.WilliamsE.L.O’HaraJ.P. (2017). Effects of dietary nitrate supplementation on physiological responses, cognitive function, and exercise performance at moderate and very-high simulated altitude. Frontiers in Physiology 8401. PubMed doi:10.3389/fphys.2017.00401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ShannonO.M.DuckworthL.BarlowM.J.WoodsD.LaraJ.SiervoM. & O’HaraJ.P. (2016). Dietary nitrate supplementation enhances high-intensity running performance in moderate normobaric hypoxia, independent of aerobic fitness. Nitric Oxide 596370. PubMed doi:10.1016/j.niox.2016.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TalkeP. & StapelfeldtC. (2006). Effect of peripheral vasoconstriction on pulse oximetry. Journal of Clinical Monitoring and Computing 20(5) 305309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WylieL.J.KellyJ.BaileyS.J.BlackwellJ.R.SkibaP.F.WinyardP.G.JonesA.M. (2013). Beetroot juice and exercise: Pharmacodynamic and dose–response relationships. Journal of Applied Physiology 115(3) 325336. PubMed doi:10.1152/japplphysiol.00372.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 109 109 20
Full Text Views 4 4 2
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar