Matcha Green Tea Drinks Enhance Fat Oxidation During Brisk Walking in Females

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Intake of the catechin epigallocatechin gallate and caffeine has been shown to enhance exercise-induced fat oxidation. Matcha green tea powder contains catechins and caffeine and is consumed as a drink. We examined the effect of Matcha green tea drinks on metabolic, physiological, and perceived intensity responses during brisk walking. A total of 13 females (age: 27 ± 8 years, body mass: 65 ± 7 kg, height: 166 ± 6 cm) volunteered to participate in the study. Resting metabolic equivalent (1-MET) was measured using Douglas bags (1-MET: 3.4 ± 0.3 ml·kg−1·min−1). Participants completed an incremental walking protocol to establish the relationship between walking speed and oxygen uptake and individualize the walking speed at 5- or 6-MET. A randomized, crossover design was used with participants tested between Days 9 and 11 of the menstrual cycle (follicular phase). Participants consumed three drinks (each drink made with 1 g of Matcha premium grade; OMGTea Ltd., Brighton, UK) the day before and one drink 2 hr before the 30-min walk at 5- (n = 10) or 6-MET (walking speed: 5.8 ± 0.4 km/hr) with responses measured at 8–10, 18–20, and 28–30 min. Matcha had no effect on physiological and perceived intensity responses. Matcha resulted in lower respiratory exchange ratio (control: 0.84 ± 0.04; Matcha: 0.82 ± 0.04; p < .01) and enhanced fat oxidation during a 30-min brisk walk (control: 0.31 ± 0.10; Matcha: 0.35 ± 0.11 g/min; p < .01). Matcha green tea drinking can enhance exercise-induced fat oxidation in females. However, when regular brisk walking with 30-min bouts is being undertaken as part of a weight loss program, the metabolic effects of Matcha should not be overstated.

Willems is with the Dept. of Sport and Exercise Sciences, University of Chichester, Chichester, United Kingdom. Şahin is with the Dept. of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey. Cook is with the Institute of Sport and Exercise Sciences, University of Worcester, Worcester, United Kingdom.

Address author correspondence to Mark Elisabeth Theodorus Willems at m.willems@chi.ac.uk.
  • Arent, S.M., Walker, A.J., Pellegrino, J.K., Sanders, D.J., McFadden, B.A., Ziegenfuss, T.N., … Lopez, H.L. (2018). The combined effects of exercise, diet, and a multi-ingredient dietary supplement on body composition and adipokine changes in overweight adults. Journal of the American College of Nutrition, 37(2), 111–120. PubMed ID: 29111889. doi:10.1080/07315724.2017.1368039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borg, G.A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14, 377–381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cruz, R.S., de Aguiar, R.A., Turnes, T., Guglielmo, L.G., Beneke, R., & Caputo, F. (2015). Caffeine affects time to exhaustion and substrate oxidation during cycling at maximal lactate steady state. Nutrients, 7(7), 5254–5264. PubMed ID: 26133971 doi:10.3390/nu7075219

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dasilva, S.G, Guidetti, L., Buzzachera, C.F., Elsangedy, H.M., Krinski, K., De Campos, W, … Baldari, C. (2011). Gender-based differences in substrate use during exercise at a self-selected pace. Journal of Strength and Conditioning Research, 25(9), 2544–2551. PubMed ID: 21747295 doi:10.1519/JSC.0b013e3181fb4962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dean, S., Braakhuis, A., & Paton, C. (2009). The effects of EGCG on fat oxidation and endurance performance in male cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 19(6), 624–644. PubMed ID: 20175431 doi:10.1123/ijsnem.19.6.624

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichenberger, P., Colombani, P.C., & Mettler, S. (2009). Effects of 3-week consumption of green tea extracts on whole-body metabolism during cycling exercise in endurance-trained men. International Journal for Vitamin and Nutrition Research, 79(1), 24–33. PubMed ID: 19839000 doi:10.1024/0300-9831.79.1.24

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitzsimons, C.F., Greig, C.A., Saunders, D.H., Lewis, S.H., Shenkin, S.D., Lavery, C., & Young, A. (2005). Responses to walking-speed instructions: Implications for health promotion for older adults. Journal of Aging and Physical Activity, 13(2), 172–183. PubMed ID: 15995263 doi:10.1123/japa.13.2.172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujioka, K., Iwamoto, T., Shima, H., Tomaru, K., Saito, H., Ohtsuka, M., … Manome, Y. (2016). The powdering process with a set of ceramic mills for green tea promoted catechin extraction and the ROS inhibition effect. Molecules, 21(4), 474. PubMed ID: 27077834 doi:10.3390/molecules21040474

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, B.C., Wei, J., Su, K.H., Chiang, A.N., Zhao, J.F., Chen, H.Y., … Lee, T.S. (2015). Transient receptor potential vanilloid type 1 is vital for (-)-epigallocatechin-3-gallate mediated activation of endothelial nitric oxide synthase. Molecular Nutrition & Food Research, 59(4), 646–657. PubMed ID: 25581901 doi:10.1002/mnfr.201400699

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Y., Zhi, F., Chen, P., Zhao, K., Xiang, H., Mao, Q., … Zhang, X. (2017). Green tea and the risk of prostate cancer: A systematic review and meta-analysis. Medicine, 96(13), 6426. doi:10.1097/MD.0000000000006426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haramizu, S., Mizunoya, W., Masuda, Y., Ohnuki, K., Watanabe, T., Yazawa, S., & Fushiki, T. (2006). Capsiate, a nonpungent capsaicin analog, increases endurance swimming capacity of mice by stimulation of vanilloid receptors. Bioscience, Biotechnology, and Biochemistry, 70(4), 774–781. PubMed ID: 16636441 doi:10.1271/bbb.70.774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haskell, W.L., Lee, I.M., Pate, R.R., Powell, K.E., Blair, S.N., Franklin, B.A., … Bauman, A. (2007). Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Medicine & Science in Sports & Exercise, 39(8), 1423–1434. PubMed ID: 17762377 doi:10.1249/mss.0b013e3180616b27

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodgson, A.B., Randell, R.K., Boon, N., Garczarek, U., Mela, D.J., Jeukendrup, A.E., & Jacobs, D.M. (2013). Metabolic response to green tea extract during rest and moderate-intensity exercise. Journal of Nutritional Biochemistry, 24(1), 325–334. PubMed ID: 22974973 doi:10.1016/j.jnutbio.2012.06.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ives, S.J., Park, S.Y., Kwon, O.S., Gifford, J.R., Andtbacka, R.H.I., Hyngstrom, J.R., & Richardson, R.S. (2017). TRPV1 channels in human skeletal muscle feed arteries: Implications for vascular function. Experimental Physiology, 102(9), 1245–1258. PubMed ID: 28681979 doi:10.1113/EP086223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssens, P.L., Hursel, R., & Westerterp-Plantenga, M.S. (2016). Nutraceuticals for body-weight management: The role of green tea catechins. Physiology & Behavior, 162, 83–87. PubMed ID: 26836279 doi:10.1016/j.physbeh.2016.01.044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E., & Wallis, G.A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine, 26(Suppl. 1), S28–37. doi:10.1055/s-2004-830512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanaley, J.A., Boileau, R.A., Bahr, J.A., Misner, J.E., & Nelson, R.A. (1992). Substrate oxidation and GH responses to exercise are independent of menstrual phase and status. Medicine & Science in Sports & Exercise, 24(8), 873–880. PubMed ID: 1406172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapoor, M.P., Sugita, M., Fukuzawa, Y., & Okubo, T. (2017). Physiological effects of epigallocatechin-3-gallate (EGCG) on energy expenditure for prospective fat oxidation in humans: A systematic review and meta-analysis. Journal of Nutritional Biochemistry, 43, 1–10. PubMed ID: 27883924 doi:10.1016/j.jnutbio.2016.10.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, N., Afaq, F., Saleem, M., Ahmad, N., & Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Research, 66(5), 2500–2505. PubMed ID: 16510563 doi:10.1158/0008-5472.CAN-05-3636

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.S., Kim, C.T., & Kim, Y. (2009). Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Annals of Nutrition and Metabolism, 54(2), 151–157. PubMed ID: 19390166 doi:10.1159/000214834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, H., Meng, X., & Yang, C.S. (2003). Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metabolism & Disposition, 31(5), 572–579. PubMed ID: 12695345 doi:10.1124/dmd.31.5.572

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, B.J., Tan, R.B., Gillen, J.B., Percival, M.E., & Gibala, M.J. (2014). No effect of short-term green tea extract supplementation on metabolism at rest or during exercise in the fed state. International Journal of Sport Nutrition and Exercise Metabolism, 24(6), 656–664. PubMed ID: 24903465 doi:10.1123/ijsnem.2013-0202

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murase, T., Haramizu, S., Shimotoyodome, A., Nagasawa, A., & Tokimitsu, I. (2005). Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 288(3), R708–R715. PubMed ID: 15563575 doi:10.1152/ajpregu.00693.2004

    • Search Google Scholar
    • Export Citation
  • Murase, T., Haramizu, S., Shimotoyodome, A., Tokimitsu, I., & Hase, T. (2006). Green tea extract improves running endurance in mice by stimulating lipid utilization during exercise. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 290(6), R1550–R1556. PubMed ID: 16410398 doi:10.1152/ajpregu.00752.2005

    • Search Google Scholar
    • Export Citation
  • Pang, J., Zhang, Z., Zheng, T.Z., Bassig, B.A., Mao, C., Liu, X., … Peng, Y. (2016). Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. International Journal of Cardiology, 202, 967–974. PubMed ID: 26318390 doi:10.1016/j.ijcard.2014.12.176

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paul, P., Carlson, S.A., Carroll, D.D., Berrigan, D., & Fulton, J.E. (2015). Walking for transportation and leisure among U.S. adults—National Health Interview Survey 2010. Journal of Physical Activity and Health, 12(Suppl. 1), S62–S69. doi:10.1123/jpah.2013-0519

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peluso, I., & Serafini, M. (2017). Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. British Journal of Pharmacology, 174(11)1195–1208. PubMed ID: 27747873 doi:10.1111/bph.13649

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Randell, R.K., Hodgson, A.B., Lotito, S.B., Jacobs, D.M., Boon, N., Mela, D.J., & Jeukendrup, A.E. (2013). No effect of 1 or 7 d of green tea extract ingestion on fat oxidation during exercise. Medicine & Science in Sports & Exercise, 45(5), 883–891. PubMed ID: 23247713 doi:10.1249/MSS.0b013e31827dd9d4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, J.D., Weekes, J.C., & Thomas, C.H. (2015). The effect of a decaffeinated green tea extract formula on fat oxidation, body composition and exercise performance. Journal of the International Society of Sports Nutrition, 12(1), 1. PubMed ID: 25650043 doi:10.1186/s12970-014-0062-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, S.L., Hattersley, J., Frost, G.S., Chambers, E.S., & Wallis, G.A. (2015). Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. Journal of Applied Physiology, 118(11), 1415–1422. PubMed ID: 25814634 doi:10.1152/japplphysiol.00058.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaiksaar, S., Jürimäe, J., Mäestu, J., Purge, P., Kalytka, S., Shakhlina, L., & Jürimäe, T. (2011). No effect of menstrual cycle phase on fuel oxidation during exercise in rowers. European Journal of Applied Physiology, 111(6), 1027–1034. PubMed ID: 21088972 doi:10.1007/s00421-010-1730-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venables, M.C., Hulston, C.J., Cox, H.R., & Jeukendrup, A.E. (2008). Green tea extract ingestion fat oxidation and glucose tolerance in healthy humans. American Journal of Clinical Nutrition, 87(3), 778–784. PubMed ID: 18326618 doi:10.1093/ajcn/87.3.778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, D.J., & Anderton, C.R. (2003). Determination of catechins in matcha green tea by micellar electrokinetic chromatography. Journal of Chromatography A, 1011(1–2), 173–180. PubMed ID: 14518774 doi:10.1016/S0021-9673(03)01133-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenz, M., Berend, J.Z., Lynch, N.A., Chappell, S., & Hackney, A.C. (1997). Substrate oxidation at rest and during exercise: Effects of menstrual cycle phase and diet composition. Journal of Physiology and Pharmacology, 48(4), 851–860. PubMed ID: 9444630

    • Search Google Scholar
    • Export Citation
  • Xu, J.Z., Yeung, S.Y., Chang, Q., Huang, Y., & Chen, Z.Y. (2004). Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. British Journal of Nutrition 91(6), 873–881. PubMed ID: 15182391 doi:10.1079/BJN20041132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, P., Ying, L., Hong, G., & Wang, Y. (2016). The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet. Food & Function, 7(1), 294–300. PubMed ID: 26448271 doi:10.1039/C5FO00828J

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y.B., Su, K.H., Kou, Y.R., Guo, B.C., Lee, K.I., Wei, J., & Lee, T.S. (2017). Role of transient receptor potential vanilloid 1 in regulating erythropoietin-induced activation of endothelial nitric oxide synthase. Acta Physiologica, 219(2), 465–477. PubMed ID: 27232578 doi:10.1111/apha.12723

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 747 746 206
Full Text Views 41 41 5
PDF Downloads 18 18 3