Comparison of Bioelectrical Impedance Analysis and Dual-Energy X-Ray Absorptiometry for Estimating Bone Mineral Content

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

The purpose of this study was to validate single-frequency hand-to-foot bioelectrical impedance analysis (HFBIA) for estimating bone mineral content (BMC) using dual-energy X-ray absorptiometry as the criterion measure in healthy men and women aged 18–40 years. A total of 80 men and women participated in this study. BMC was estimated on the same day using HFBIA and dual-energy X-ray absorptiometry. The HFBIA device provided higher mean BMC values in men and the entire sample, but not in women. A smaller standard error of estimate was observed in women (0.20, corresponding to 8% of the mean reference BMC values) compared with men (0.39, corresponding to 12% of the mean reference BMC values) and the combined sample (0.31). HFBIA provided a smaller constant error and individual estimation error indicated by the 95% limits of agreement in women (−0.05 ± 0.39) compared with men (−0.16 ± 0.78) and the entire sample (−0.10 ± 0.63). In conclusion, although BMC values were found to be more accurate in women, HFBIA overestimated BMC compared with dual-energy X-ray absorptiometry, especially in individuals with lower values. Given these results, using HFBIA to measure BMC would be inappropriate for diagnostic purposes.

Stone, Wingo, and Esco are with the Dept. of Kinesiology, The University of Alabama, Tuscaloosa, AL. Nickerson is with the Dept. of Curriculum & Pedagogy, Texas A&M International University, Laredo, TX.

Address author correspondence to Tori M. Stone at tmstone3@crimson.ua.edu.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • AndreoliA.MelchiorriG.De LorenzoA.CarusoI.Sinibaldi SalimeiP. & GuerrisiM. (2002). Bioelectrical impedance measures in different position and vs dual-energy X-ray absorptiometry (DXA). The Journal of Sports Medicine and Physical Fitness 42(2) 186189. PubMed ID: 12032414

    • Search Google Scholar
    • Export Citation
  • BlandJ.M. & AltmanD.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 327307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2015). Percentage of adults aged 65 and over with osteoporosis or low bone mass at the femur neck or lumbar spine: United States, 2005–2010. Retrieved from https://www.cdc.gov/nchs/data/hestat/osteoporsis/osteoporosis2005_2010.htm

    • Export Citation
  • CheuvrontS.N. & SawkaM.N. (2005). Hydration assessment of athletes. Sports Science Exchange 18(2) 16.

  • CvetkoE.D.DrenjančevićI.NešićN. & AhićJ.M. (2014). Possibilities of use bioelectrical impedance analysis as measuring technique in prevention of osteoporosis. Periodicum Biologorum 116(1) 6570.

    • Search Google Scholar
    • Export Citation
  • GiavarinaD. (2015). Understanding Bland Altman analysis. Biochemia Medica 25141151. doi:10.11613/BM.2015.015

  • HopkinsW.G.MarshallS.W.BatterhamA.M. & HaninJ. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise 41313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensky-SquiresN.E.Dieli-ConwrightC.M.RossuelloA.ErcegD.N.McCauleyS. & SchroederE.T. (2008). Validity and reliability of body composition analysers in children and adults. British Journal of Nutrition 100(4) 859865. PubMed ID: 18346304 doi:10.1017/S0007114508925460

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KanisJ.A.McCloskeyE.V.JohanssonH.OdenA.MeltonL.J. 3rd & KhaltaevN. (2008). A reference standard for the description of osteoporosis. Bone 42(3) 467475. PubMed ID: 18180210 doi:10.1016/j.bone.2007.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrouwerJ.S. (2008). Why Bland–Altman plots should use X, not (Y + X)/2 when X is a reference method. Statistics in Medicine 27778780. PubMed ID: 17907247 doi:10.1002/sim.3086

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaForgiaJ.GunnS. & WithersR.T. (2008). Body composition: Validity of segmental bioelectrical impedance analysis. Asia Pacific Journal of Clinical Nutrition 17(4) 586591. PubMed ID: 19114394

    • Search Google Scholar
    • Export Citation
  • LangT.F. (2011). The bone-muscle relationship in men and women. Journal of Osteoporosis 201114. doi:10.4061/2011/702735

  • MacfarlaneD.J.ChanN.T.TseM.A. & JoeG.M. (2016). Agreement between bioelectrical impedance and dual energy X-ray absorptiometry in assessing fat, lean and bone mass changes in adults after a lifestyle intervention. Journal of Sports Sciences 34(12) 11761181. PubMed ID: 26451461 doi:10.1080/02640414.2015.1096416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MiyatakeN.TanakaiA.EguchiM.MiyachiM.TabataI. & NumataT. (2009). Reference data of multi frequencies bioelectric impedance method in Japanese. Anti-Aging Medicine 6(3) 1014. doi:10.3793/jaam.6.10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoonJ.R.TobkinS.E.SmithA.E.LockwoodC.M.WalterA.A.CramerJ.T.StoutJ.R. (2009). Anthropometric estimations of percent body fat in NCAA Division I female athletes: A 4-compartment model validation. The Journal of Strength and Conditioning Research 23(4) 10681076. PubMed ID: 19528870 doi:10.1519/JSC.0b013e3181aa1cd0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NormanJ. (2016). Making the diagnosis of osteoporosis: Bone mineral density and T-scores. Retrieved from https://www.endocrineweb.com/conditions/osteoporosis/making-diagnosis-osteoporosis

    • Export Citation
  • PatilB.R.PatkarD. & JindalG.D. (2012). Estimation of bone mineral content from bioelectrical impedance analysis in Indian adults aged 23–81 years: A comparison with dual energy X-ray absorptiometry. International Journal of Biomedical Engineering and Technology 899114. doi:10.1504/IJBET.2012.045360

    • Crossref
    • Search Google Scholar
    • Export Citation
  • QamarF.NaveedS.IshtiaqS.M.HanifN.FarooqS.AliN.AlamT. (2016). Risk factors & preventive measures of osteoporosis. Journal of Biotechnology and Biosafety 4(4) 411416.

    • Search Google Scholar
    • Export Citation
  • RalstonS.H. & UitterlindenA.G. (2010). Genetics of osteoporosis. Endocrine Reviews 31(5) 629662. PubMed ID: 20431112 doi:10.1210/er.2009-0044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VellasB.GuigozY.GarryP.J.NourhashemiF.BennahumD.LauqueR.D. & AlbaredeJ. (1999). The mini nutritional assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 15116122. PubMed ID: 9990575 doi:10.1016/S0899-9007(98)00171-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VölgyiE.TylavskyF.A.LyytikäinenA.SuominenH.MarkkuA. & ChengS. (2008). Assessing body composition with DXA and bioimpedance: Effects of obesity, physical activity, and age. Obesity 16700705. doi:10.1038/oby.2007.94

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 56 56 23
Full Text Views 2 2 1
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar