Protein Supplementation During a 6-Month Concurrent Training Program: Effect on Body Composition and Muscular Strength in Sedentary Individuals

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

We examined the effect of a protein supplement on muscular strength and body composition during 6 months of a 5 days/week concurrent strength and endurance training program. Sedentary males (n = 26) and females (n = 25), 18–25 years, were randomly assigned to receive a protein (PRO, 42 g/serving) or carbohydrate (CON) supplement twice daily. Strength and body composition (dual-energy X-ray absorptiometry) were assessed at baseline, 3 (3M), and 6 (6M) months. Protein intake was higher in PRO (PRO: 2.2 g/kg; CON: 1.1 g/kg; p < .001). Females in both groups gained similar strength at 3M and 6M in bench press and hip sled. Males in PRO gained more bench press strength at 3M (PRO: 24.6 ± 3.2 kg; CON: 14.3 ± 3.8 kg; p = .06) and 6M (PRO: 34.4 ± 4.3 kg; CON: 18.7 ± 5.1 kg; p = .03) and hip sled strength at 3M (PRO: 67.7 ± 9.2 kg; CON: 40.8 ± 10.8 kg, p = .07) and 6M (PRO: 94.0 ± 10.6 kg; CON: 65.1 ± 12.4 kg; p = .09) compared with CON. Females in PRO experienced a greater reduction in fat mass over the course of the study (6M) than CON (PRO: −1.7 ± 0.5 kg; CON: 0.1 ± 0.5 kg; p = .06). Changes in lean mass were similar for females in PRO and CON. Loss in fat mass was similar for males in PRO and CON at 3M and 6M. Males in PRO gained more lean mass at 3M compared with CON (PRO: 3.2 ± 0.3 kg; CON: 2.2 ± 0.4 kg; p = .1) but similar gains at 6M (PRO: 2.6 ± 0.4 kg; CON: 2.2 ± 0.5 kg; p = .6). The results of this study demonstrate that PRO used during a concurrent training program may augment positive changes in body composition in young sedentary males and females, and strength gains in males.

Vukovich is with the Dept. of Health and Nutritional Sciences, South Dakota State University, Brookings, SD. Binkley and Specker are with the Ethel A. Martin Program in Human Nutrition, South Dakota State University, Brookings, SD. Ormsbee and Willingham are with the Dept. of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL. Ormsbee is also with the Discipline of Biokinetics, Exercise, and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa. Marchant is with Fort Collins Family Medicine Residency Program, University of Colorado Health, Ffort Collins, CO.

Address author correspondence to Matthew D. Vukovich at matt.vukovich@sdstate.edu.
  • Abe, T., Kojima, K., Kearns, C.F., Yohena, H., & Fukuda, J. (2003). Whole body muscle hypertrophy from resistance training: Distribution and total mass. British Journal of Sports Medicine, 37(6), 543–545. PubMed ID: 14665598 doi:10.1136/bjsm.37.6.543

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, L.L., Tufekovic, G., Zebis, M.K., Crameri, R.M., Verlaan, G., Kjaer, M., … Aagaard, P. (2005). The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism: Clinical and Experimental, 54(2), 151–156. doi:10.1016/j.metabol.2004.07.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonio, J., Peacock, C.A., Ellerbroek, A., Fromhoff, B., & Silver, T. (2014). The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition, 11, 19. doi:10.1186/1550-2783-11-19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arciero, P.J., Gentile, C.L., Martin-Pressman, R., Ormsbee, M.J., Everett, M., Zwicky, L., & Steele, C.A. (2006). Increased dietary protein and combined high intensity aerobic and resistance exercise improves body fat distribution and cardiovascular risk factors. International Journal of Sport Nutrition and Exercise Metabolism, 16(4), 373–392. PubMed ID: 17136940 doi:10.1123/ijsnem.16.4.373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballard, T.L., Clapper, J.A., Specker, B.L., Binkley, T.L., & Vukovich, M.D. (2005). Effect of protein supplementation during a 6-mo strength and conditioning program on insulin-like growth factor I and markers of bone turnover in young adults. The American Journal of Clinical Nutrition, 81(6), 1442–1448. PubMed ID: 15941900 doi:10.1093/ajcn/81.6.1442

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ballard, T.L.P., Specker, B.L., Binkley, T.L., & Vukovich, M.D. (2006). Effect of protein supplementation during a 6-month strength and conditioning program on areal and volumetric bone parameters. Bone, 38(6), 898–904. doi:10.1016/j.bone.2005.10.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beattie, K., Kenny, I.C., Lyons, M., & Carson, B.P. (2014). The effect of strength training on performance in endurance athletes. Sports Medicine, 44(6), 845–865. doi:10.1007/s40279-014-0157-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G.J., Petersen, S.R., Wessel, J., Bagnall, K., & Quinney, H.A. (1991). Physiological adaptations to concurrent endurance training and low velocity resistance training. International Journal of Sports Medicine, 12(4), 384–390. doi:10.1055/s-2007-1024699

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G.J., Syrotuik, D., Martin, T.P., Burnham, R., & Quinney, H.A. (2000). Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. European Journal of Applied Physiology, 81(5), 418–427. doi:10.1007/s004210050063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biolo, G., Maggi, S.P., Williams, B.D., Tipton, K.D., & Wolfe, R.R. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. American Journal of Physiology, 268(3, Pt. 1), 514–520. PubMed ID: 7900797

    • Search Google Scholar
    • Export Citation
  • Biolo, G., Tipton, K.D., Klein, S., & Wolfe, R.R. (1997). An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. American Journal of Physiology, 273(1, Pt. 1), E122–E129. PubMed ID: 9252488.

    • Search Google Scholar
    • Export Citation
  • Borsheim, E., Tipton, K.D., Wolf, S.E., & Wolfe, R.R. (2002). Essential amino acids and muscle protein recovery from resistance exercise. American Journal of Physiology. Endocrinology and Metabolism, 283(4), E648–E657. doi:10.1152/ajpendo.00466.2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brook, M.S., Wilkinson, D.J., Mitchell, W.K., Lund, J.N., Szewczyk, N.J., Greenhaff, P.L., … Atherton, P.J. (2015). Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB Journal, 29(11), 4485–4496. doi:10.1096/fj.15-273755

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, B.I., Aguilar, D., Conlin, L., Vargas, A., Schoenfeld, B.J., Corson, A., … Couvillion, K. (2018). Effects of high versus low protein intake on body composition and maximal strength in aspiring female physique athletes engaging in an 8-week resistance training program. International Journal of Sport Nutrition and Exercise Metabolism, 3, 1–21. doi:10.1123/ijsnem.2017-0389

    • Search Google Scholar
    • Export Citation
  • Candow, D.G., Burke, N.C., Smith-Palmer, T., & Burke, D.G. (2006). Effect of whey and soy protein supplementation combined with resistance training in young adults. International Journal of Sport Nutrition and Exercise Metabolism, 16(3), 233–244. PubMed ID: 16948480doi:10.1123/ijsnem.16.3.233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cantrell, G.S., Schilling, B.K., Paquette, M.R., & Murlasits, Z. (2014). Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. European Journal of Applied Physiology, 114(4), 763–771. PubMed ID: 24390691 doi:10.1007/s00421-013-2811-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cermak, N.M., Res, P.T., de Groot, L.C., Saris, W.H., & van Loon, L.J. (2012). Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. The American Journal of Clinical Nutrition, 96(6), 1454–1464. PubMed ID: 23134885 doi:10.3945/ajcn.112.037556

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chesley, A., MacDougall, J.D., Tarnopolsky, M.A., Atkinson, S.A., & Smith, K. (1992). Changes in human muscle protein synthesis after resistance exercise. Journal of Applied Physiology, 73(4), 1383–1388. PubMed ID: 1280254 doi:10.1152/jappl.1992.73.4.1383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chromiak, J.A., Smedley, B., Carpenter, W., Brown, R., Koh, Y.S., Lamberth, J.G., … Altorfer, G. (2004). Effect of a 10-week strength training program and recovery drink on body composition, muscular strength and endurance, and anaerobic power and capacity. Nutrition, 20(5), 420–427. doi:10.1016/j.nut.2004.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Consolazio, C.F., Johnson, H.L., Nelson, R.A., Dramise, J.G., & Skala, J.H. (1975). Protein metabolism during intensive physical training in the young adult. The American Journal of Clinical Nutrition, 28(1), 29–35. PubMed ID: 1115014 doi:10.1093/ajcn/28.1.29

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cribb, P.J., Williams, A.D., Carey, M.F., & Hayes, A. (2006). The effect of whey isolate and resistance training on strength, body composition, and plasma glutamine. International Journal of Sport Nutrition and Exercise Metabolism, 16(5), 494–509. PubMed ID: 17240782 doi:10.1123/ijsnem.16.5.494

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dohm, G.L., Hecker, A.L., Brown, W.E., Klain, G.J., Puente, F.R., Askew, E.W., & Beecher, G.R. (1977). Adaptation of protein metabolism to endurance training. Increased amino acid oxidation in response to training. Biochemical Journal, 164, 705–708. PubMed ID: 883961 doi:10.1042/bj1640705

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferguson-Stegall, L., McCleave, E., Ding, Z., Doerner Iii, P.G., Liu, Y., Wang, B., … Ivy, J.L. (2011). Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. Journal of Nutrition and Metabolism, 2011, 623182. doi:10.1155/2011/623182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, S., Rasmussen, B.B., Bell, J.A., Cadenas, J.G., & Volpi, E. (2007). Basal muscle intracellular amino acid kinetics in women and men. American Journal of Physiology. Endocrinology and Metabolism, 292(1), E77–E83. doi:10.1152/ajpendo.00173.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glowacki, S.P., Martin, S.E., Maurer, A., Baek, W., Green, J.S., & Crouse, S.F. (2004). Effects of resistance, endurance, and concurrent exercise on training outcomes in men. Medicine & Science in Sports & Exercise, 36(12), 2119–2127. PubMed ID: 15570149 doi:10.1249/01.MSS.0000147629.74832.52

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gontzea, I., Sutzescu, R., & Dumitrache, S. (1975). The influence of adaptation to physical effort on nitrogen balance in man. Nutrition Reports International, 11(3), 231–236.

    • Search Google Scholar
    • Export Citation
  • Josse, A.R., Tang, J.E., Tarnopolsky, M.A., & Phillips, S.M. (2010). Body composition and strength changes in women with milk and resistance exercise. Medicine & Science in Sports & Exercise, 42(6), 1122–1130. doi:10.1249/MSS.0b013e3181c854f6

    • Search Google Scholar
    • Export Citation
  • Kato, H., Suzuki, K., Bannai, M., & Moore, D.R. (2016). Protein requirements are elevated in endurance athletes after exercise as determined by the indicator amino acid oxidation method. PLoS ONE, 11(6), e0157406. doi:10.1371/journal.pone.0157406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamont, L.S., McCullough, A.J., & Kalhan, S.C. (2001). Gender differences in leucine, but not lysine, kinetics. Journal of Applied Physiology, 91(1), 357–362. doi:10.1152/jappl.2001.91.1.357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, P.W., Dolny, D.G., & Yarasheski, K.E. (1997). Moderate physical activity can increase dietary protein needs. Canadian Journal of Applied Physiology, 22(5), 494–503. PubMed ID: 9356767 doi:10.1139/h97-032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, P.W., Tarnopolsky, M.A., MacDougall, J.D., & Atkinson, S.A. (1992). Protein requirements and muscle mass/strength changes during intensive training in novice bodybuilders. Journal of Applied Physiology, 73(2), 767–775. PubMed ID: 1400008 doi:10.1152/jappl.1992.73.2.767

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longland, T.M., Oikawa, S.Y., Mitchell, C.J., Devries, M.C., & Phillips, S.M. (2016). Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. The American Journal of Clinical Nutrition, 103(3), 738–746. doi:10.3945/ajcn.115.119339

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, C.N., Zackin, M.J., Frontera, W.R., & Evans, W.J. (1989). Dietary protein requirements and body protein metabolism in endurance-trained men. Journal of Applied Physiology, 66(6), 2850–2856. PubMed ID: 2745350 doi:10.1152/jappl.1989.66.6.2850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, R.W., Murphy, K.T., McKellar, S.R., Schoenfeld, B.J., Henselmans, M., Helms, E., … Phillips, S.M. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 52, 376–384. doi:10.1136/bjsports-2017-097608

    • Search Google Scholar
    • Export Citation
  • Perez-Schindler, J., Hamilton, D.L., Moore, D.R., Baar, K., & Philp, A. (2015). Nutritional strategies to support concurrent training. European Journal of Sport Science, 15(1), 41–52. doi:10.1080/17461391.2014.950345

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, S.M., Atkinson, S.A., Tarnopolsky, M.A., & MacDougall, J.D. (1993). Gender differences in leucine kinetics and nitrogen balance in endurance athletes. Journal of Applied Physiology, 75(5), 2134–2141. PubMed ID: 8307870 doi:10.1152/jappl.1993.75.5.2134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, S.M., Tipton, K.D., Ferrando, A.A., & Wolfe, R.R. (1999). Resistance training reduces the acute exercise-induced increase in muscle protein turnover. The American Journal of Physiology, 276(1 Pt. 1), E118–E124. PubMed ID: 9886957.

    • Search Google Scholar
    • Export Citation
  • Phillips, S.M., & Van Loon, L.J.C. (2011). Dietary protein for athletes: From requirements to optimum adaptation. Journal of Sports Sciences, 29(Suppl. 1), S29–S38. doi:10.1080/02640414.2011.619204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, B.B., Tipton, K.D., Miller, S.L., Wolf, S.E., & Wolfe, R.R. (2000). An oral essential amino acid–carbohydrate supplement enhances muscle protein anabolism after resistance exercise. Journal of Applied Physiology, 88(2), 386–392. PubMed ID: 10658002 doi:10.1152/jappl.2000.88.2.386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reidy, P.T., Borack, M.S., Markofski, M.M., Dickinson, J.M., Deer, R.R., Husaini, S.H., … Rasmussen, B.B. (2016). Protein supplementation has minimal effects on muscle adaptations during resistance exercise training in young men: A double-blind randomized clinical trial. The Journal of Nutrition, 146(9), 1660–1669. doi:10.3945/jn.116.231803

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennie, M.J., & Tipton, K.D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annual Review of Nutrition, 20, 457–483. doi:10.1146/annurev.nutr.20.1.457

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozenek, R., Ward, P., Long, S., & Garhammer, J. (2002). Effects of high-calorie supplements on body composition and muscular strength following resistance training. The Journal of Sports Medicine and Physical Fitness, 42(3), 340–347. PubMed ID: 12094125

    • Search Google Scholar
    • Export Citation
  • Schumann, M., Yli-Peltola, K., Abbiss, C.R., & Hakkinen, K. (2015). Cardiorespiratory adaptations during concurrent aerobic and strength training in men and women. PLoS ONE, 10(9), e0139279. doi:10.1371/journal.pone.0139279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarnopolsky, M.A., Atkinson, S.A., MacDougall, J.D., Chesley, A., Phillips, S., & Schwarcz, H.P. (1992). Evaluation of protein requirements for trained strength athletes. Journal of Applied Physiology, 73(5), 1986–1995. PubMed ID: 1474076 doi:10.1152/jappl.1992.73.5.1986

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarnopolsky, M.A., Bosman, M., Macdonald, J.R., Vandeputte, D., Martin, J., & Roy, B.D. (1997). Postexercise protein–carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. Journal of Applied Physiology, 83(6), 1877–1883. PubMed ID: 9390958 doi:10.1152/jappl.1997.83.6.1877

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tarnopolsky, M.A., MacDougall, J.D., & Atkinson, S.A. (1988). Influence of protein intake and training status on nitrogen balance and lean body mass. Journal of Applied Physiology, 64(1), 187–193. PubMed ID: 3356636 doi:10.1152/jappl.1988.64.1.187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, D.T., Erdman, K.A., & Burke, L.M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–528. doi:10.1016/j.jand.2015.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tipton, K.D., Ferrando, A.A., Phillips, S.M., Doyle, D.J., & Wolfe, R.R. (1999). Postexercise net protein synthesis in human muscle from orally administered amino acids. American Journal of Physiology, 276(4, Pt. 1), E628–634. PubMed ID: 10198297

    • Search Google Scholar
    • Export Citation
  • West, D.W.D., Burd, N.A., Churchward-Venne, T.A., Camera, D.M., Mitchell, C.J., Baker, S.K., … Phillips, S.M. (2012). Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. Journal of Applied Physiology, 112(11), 1805–1813. PubMed ID: 22383503 doi:10.1152/japplphysiol.00170.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 191 191 38
Full Text Views 32 32 5
PDF Downloads 20 20 5